
www.manaraa.com



www.manaraa.com

DTJIV- IBBABT
NAV 3CH00L
MONToJ LA 93943-8002



www.manaraa.com



www.manaraa.com



www.manaraa.com



www.manaraa.com



www.manaraa.com



www.manaraa.com



www.manaraa.com

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A DYNAMIC SIMULATION AND FEEDBACK CONTROL

SCHEME FOR THE U. S. MARINE CORPS'
AIRBORNE REMOTELY OPERATED DEVICE (AROD)

by

William Glen Bassett

September 1987

Thesis Advisor: H. A. TITUS

Approved for public release; distribution is unlimited

T234130



www.manaraa.com



www.manaraa.com

eCuRi'y Classification of this page

REPORT DOCUMENTATION PAGE

4 REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb RESTRICTIVE MARKINGS

NONE
* SECURITY Classification authority

b OEClaSSiFiCATiON /OOWNGRAOiNG SChEOUlE

) DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for piblic release;
distribution is unlimited

PERFORMING ORGANIZATION REPORT NUM8£R(S) S MONITORING ORGANISATION REPORT NuMBERIS)

I NAME OF PERFORMING ORGANIZATION

tfaval Postgraduate Schoo

6b OFFICE SYMBOL
(if tpplKsblti

62

?t NAME OF MONITORING ORGANISATION

Naval Postgraduate School
ADDRESS iC/fy Stttt. snd UP Codtt

Monterey, California 9 3943-5000

?b AOORESS(Ory Sf*r». *nd UP Coo*)

Monterey, California 9 3943-5900

NAME OF FUNDING/ SPONSORING
ORGANIZATION

8b OFUCE SYMBOL
(It *0ph<*bi9)

9 PROCUREMENT INSTRUMENT iOENT.F iCATiON NUMBER

AODRESSfOry Sf*f* *nd UP Cod*) 10 SOURCE OF FUNOING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TAS<
NO

WORK JNlT
ACCESSION NO

T:Tl£ tmciudr S*cu"fy CI*lut«ttion)

V DYNAMIC SIMULATION AND FEEDBACK CONTROL SCHEME FOR THE U.S. MARINE
ORPS 1 AIRBORNE REMOTELY OPERATED DEVICE (AROD)
PERSONA,. AuTMOR(S)

JASSETT, William G.

j r>S( OF REPORT

laster's Thesis
i Jd T'ME COVERED
fflQM TO

14 DATE OF REPORT (Yf*r Month 0*y)

1987 September ..

'S PAGE CO^NT

155
SLP-M VENTARY NOTATION

COSATi COOES
1 ElO GROUP SuB GROUP

Ifl SUBJECT TERMS {Contmu* on revtru it ntttu*ry *nd identity by blo<k number)
Remotely Piloted Vehicle (RPV

) ; AROD; Multiple-
Input , Multiple-Output (MIMO ) ; Optimal Control;
UHF Antenna; Dynamic Simulation; Modelling;

ABSTRACT (Contmut on f»fT» it n*<tU4ry

?he equations of motion
ind programmed in a comp
.s integrated with the c
:he multiple-input, mult
:ontrol techniques. Tim

As a separate issue,
lagnetic analysis and a
:ransmission

.

ind identity by biotk numbtr)

for a ducted fan hovering device are developed
uter simulation. Experimental aerodynamic data
omputer model. A feedback control scheme for
iple-output system is determined using optimal
e response results are obtained and analyzed.
the body of the device is modelled for electro-

basic antenna design is determined for UHF

S'R'3uTiON' AVAILABILITY OF ABSTRACT

ZI-.NClaSSiFiEO'UNL'MiTEO Q same as rpt Ootic users

2\ ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
. *«AME OF RESPONSIBLE "NOiViOUAL 22b TELEPHONE (tarJudk Ar»*Cod*>

(408) 646-2454
;:c offhe s»MBOi.

62

FORM 1473. 84 mar 8 j APR ed't'On "• Jy bt ut«d u"M ti*«utttd

All oir>*r td'(>om *<• obtol«t«
security classi f ication of t—s pace



www.manaraa.com

Approved for public release; distribution is unlimited,

A Dynamic Simulation and Feedback Control
Scheme for the U. S. Marine Corps'

Airborne Remotely Operated Device (AROD)

by

William Glen Bassett
Captain, United States Marine Corps

B.S., Cornell University, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1987



www.manaraa.com

ABSTRACT

The equations of motion for a ducted fan hovering device

are developed and programmed in a computer simulation.

Experimental aerodynamic data is integrated with the

computer model. A feedback control scheme for the multiple-

input, multiple-output system is determined using optimal

control techniques. Time response results are obtained and

analyzed.

As a separate issue, the body of the device is modelled

for electromagnetic analysis and a basic antenna design is

determined for UHF transmission.
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I. INTRODUCTION

A. WHAT IS AROD?

The U. S. Marine Corps has established the Ground/Air

Tele Robotic Systems (GATERS) program to develop, test, and

field robotic devices for direct use by U. S. Marine

infantrymen. These robotic systems will be operated under

the concept of tele robotics which implies that a man,

stationed remotely from the vehicle, will control the device

as if he is actually on board.

The Airborne Remotely Operated Device (AROD) is the

vehicle being developed through the GATERS program to meet

the Marine Corps 1 needs for an airborne, short-range, direct

support remotely piloted vehicle (RPV) . The GATERS program

office [1] states that, from a tactical perspective:

The AROD is ... designed to allow the front line commander
to see "over the next hill", out to a distance of two
kilometers and "around the next corner" in an urban
environment.

.

This tactical requirement has led to a more technical

statement of what AROD will be. The GATERS program has

stated [2]

:

The AROD will be a ducted-fan, hovering device capable of
a forward translation speed of 30 miles per hour. The
vehicle will carry a fibre optic data link and on board
cameras to support assigned missions out to a distance of
5 kilometers. Normal operating radius is 2 kilometers.

More detailed requirements are listed in Appendix A.

11
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B, AROD AND OPTIMAL CONTROL

The AROD is to be operated by a Marine, untrained and

unskilled in aerodynamic flight. Therefore, AROD must be

inherently stable and responsive to simple controls such as

"go up/down", "rotate right/left", "go forward", "go

sideways". These instructions will be commanded from a

joystick, through the control uplink to an on-board control

system. The control system will interpret the command and

perform the necessary tasks to maneuver the AROD. The

design of this controller is the major topic of this work.

Figure 1.1 is a schematic of the prototype AROD.

Figure 1.1 Airborne Remotely Operated Device (AROD)

12
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Chapter II discusses the AROD system and the equations

which govern its motion. The equations are complex and the

system has multiple inputs and multiple outputs. One

approach to controller design for such a system is to

simplify the equations describing the system as much as

possible while retaining as much of the system characteris-

tics as possible. This is the method developed herein.

The complex multiple-input, multiple-output AROD system

is appropriately addressed using optimal control techniques

with the aid of a digital computer [3]. Optimal control,

therefore, is the approach taken and developed in this work

to solve the problem of stability and control of the AROD.

C. AROD AND RADIO FREQUENCY TRANSMISSIONS

AROD, as previously described, utilizes a fiber optic

tether to pass control information and a video signal from

on board observation devices. Therefore, the need for radio

frequency (RF) transmissions to or from the vehicle is not

immediately obvious. In fact, under ideal tactical condi-

tions, the RF signature, susceptible to hostile electronic

countermeasures, would be a most undesirable characteristic

for a flying vehicle to have. Nevertheless, the fiber optic

tether will be subject to damage and a back-up system must

be considered for vehicle control, and for sending back the

video signal as well. Most importantly, training must be

conducted prior to any conflict or situation in which AROD

13
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is to be used. The fiber optic cable, not immediately

reusable by the lower echelon ground forces, is expensive

and, again, susceptible to damage. Therefore, it is

desirable to provide a low cost method for training opera-

tors and tactical commanders in the use of the AROD; hence

the need for an alternative to a fiber optic tether.

A back-up RF communications link to provide operator

commands to the AROD has already been designed and imple-

mented. However, this is an uplink only and provides no

means for the on board cameras to return their wide

bandwidth video signal to the ground station. Some

consideration of this need has been made in the GATERS

program and a transmission frequency in the 800 to 900

megahertz range has been tentatively approved. [2] It has

also been recognized that a video signal via RF might be

adequate even though it was somewhat degraded relative to

the high bandwidth video signals possible with fiber optics.

With these assumptions in mind, Chapter IV deals with the

design of an on board antenna suitable for transmitting a

video signal from AROD to the ground station.

D. SCOPE

In summary, this work will address two different

problems associated with AROD:

(1) Design of a control system for stable flight.

(2) Design of a radio frequency antenna for the AROD.

14
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1. Controller Design

System design of the vehicle has been previously

undertaken by AROD project engineers. The prototype AROD

has been built and pertinent information is listed in

Appendix A. In Chapter II, the model describing AROD is

developed. Design of the proposed control system is under-

taken in Chapter III.

2. Antenna Design

Chapter IV deals exclusively with design and

analysis of an RF antenna proposed for AROD. The design

approach is to analyze the requirements and determine a

basic design which can be refined gradually until an

acceptable solution is found. The computer program

Numerical Electromagnetics Code (NEC) , developed by the

Naval Ocean Systems Center is used extensively to aid in the

design. No attempt is made to recommend specific hardware

components in order to implement the antennas.

15
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II. AROD DYNAMIC SIMULATION

The theory behind the equations governing aerodynamic

flight is well developed. Procedures exist which make the

modelling of complicated, multiple engine, highly maneuver-

able aircraft almost a step by step task. Unfortunately, the

dynamics which characterize AROD differ considerably from

the standard flight model at a very basic level. Like all

flying vehicles, AROD has six degrees of freedom of motion:

three linear displacements and three angular rotations, but

here the similarities end. This ducted fan device has no

lift producing surfaces other than the propeller . which

accounts for 100 percent of its lift and 100 percent of its

complexity. This chapter traces the development of a

suitable dynamic model of the AROD, concentrating first on

the significant gyroscopic contribution of its propeller,

and then on the complete vehicle. The goal is to provide a

computer simulation with which an experimental control

algorithm may be integrated for the purpose of analysis and

improvement. [4:pp.2-22]

A. THE GYROSCOPIC AROD

AROD is a gyroscope. The single propeller rotates about

the longitudinal vehicle axis to produce a downwash or jet

16
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of air through the duct which makes up the AROD body. This

jet is directed by pitching the body forward, backward, or

side to side so that the vehicle moves away from the jet in

the direction desired. To appreciate the control effort

required to pitch the vehicle in a specific direction

without causing undesired effects (coupling) in the other

five degrees of freedom, the equations governing a gyroscope

need to be understood.

Figure 2 . 1 pictures a gyroscope which rotates in the

same plane as the AROD propeller relative to the coordinate

system described. This axis orientation will also serve to

define symbols for later use. For illustration, the body-

fixed and earth-fixed axes do not coincide in Figure 2.1.

X,Y,Z and P,Q,R are the body-fixed descriptive geometry for

linear displacement and angular rotation rate. P,Q/ and R

will also be referred to as roll, pitch, and yaw. X',Y',Z'

and <p,Q,rl), are the corresponding earth-fixed displacements

and rotations. X' can be thought of as altitude. <p,6, and

i> are the Euler angles. Velocities will be denoted by U,V,

and W for rate of displacement in the X,Y, and Z directions,

and U'fV'jW' for X* ,Y* ,Z* . Pictured also for use in later

discussion are L,M,N (rolling, pitching, and yawing moments)

and Fx ,

F

y
,

F

z
(applied force components)

.

Angular momentum, h, due to the propeller is defined as

hr = I r w r
= ihrx + jh + khrz (2.1)

17
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^>

1 'Xv X>L-X

/>

i„l

EARTH-FIXED
AXES

r^y'v
z w^ . N

BODY-FIXED

AXIS

hy>Fy,M

Figure 2.1 Gyroscope and Axes Orientation

The rotor lies in the YZ plane of the body coordinates.

Since the coordinate axes have been chosen so that the rotor

spins symmetrically about the X-axis, h r is directed only

along X and h r y
= h r 2

= 0. Equation 2.1 becomes

hr = J r «r = ' hr (2.2)

At this point, a simple calculation will illustrate the

significant influence the rotor has over the AROD. Refer-

ence 4 states that in developing the equations of motion for

aircraft with rotors which exert gyroscopic moments on the

18
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body "more often than not, such gyroscopic moments turn out

to be negligible." In the AROD case, however, Ir
= .015

ft2 -lb(mass) and hover speed of the propeller is u
r

= 7200

rpm = 753.98 rad/sec. From Eq. 2.2, h
r
= 11.3 ft2 -lb (m) /sec.

Compared with a nominal total mass of 2.64 lb(m) (85 lb

weight) , it is clear that the angular momentum imparted by

the rotor is significant and that gyroscopic effects "will

play a large part in modelling the dynamic behavior of AROD.

Complications arising from these gyro effects can also

be illustrated. If the AROD body and rotor are considered a

complete gyroscopic system, then the angular momentum of the

body must be included in the formulation. Angular momentum

due to a rotating body is noted as hb
= i

h

b x
+ jhby + k

h

b z .

With the orientation of Figure 2.1, Eq. 2.1 becomes

h = i (hbx + hrx ) + jhby + khbz (2.3)

= i (PIX + I r w r ) + j QIy + kRI z

where h is the combined angular momentum of the rotor
and body.

Angular moments about the axes of a gyro are discussed in

the next section and defined by Euler [5:p. 93] as

L = hx
- hyR + hz Q (2.4)

M = hy -hz P + hx R

N = h
z -hx Q + hyP

A simulation of this simple gyro model is given in

Appendix B. Results are shown in Figure 2.2 for the case of

19
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a disturbance about the Y axis (pitch) . Note that the

actual moments of inertia, listed in Appendix A f were used

.5QCT]

PITCH

YAW -

ANGLE
RATE

(RAD/feEC)

,250-

0-

» » I \

» \

t t

» i

A \

lj \ \i\\ r\\ rx\ /?c;

\ /
V>'./ \>6 VJ-V N

w

•w v ^—.

.

2 3 4

TIME (SEC)

Figure 2.2 Gyroscopic Coupling Effects

in this first step computer simulation. The time response

shown here is for the simple case with no rotor accelera-

tion term (w
r

= 0) and is the result of a one secon step

for an angular moment, M, beginning at time = 1 second. The

amplitude is unimportant and has no effect on the time

response except to scale the result. The purpose of the

input was to pitch over the coordinate system by applying a

torque about the Y axis (Q) . Ideally, a stable, well

20
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behaved device would simply pitch over and maintain its new

attitude. This is not the case for AROD and Figure 2.2

illustrates the precession and nutation due to a severe

coupling of the pitch (Q) and yaw(R) axes. These gyroscopic

effects, then, are the reason a "simple" device such as AROD

presents such a complex controls problem to the designer.

B. EQUATIONS OF MOTION

The basic equations of motion are developed for a

typical aircraft in References 4 and 5. A combination of

the two approaches is taken here to arrive at the set of

equations describing AROD.

The Euler equations of motion for a free flying rigid

vehicle with six degrees of freedom are derived from

Newton's second law. For angular moments applied to the

coordinate axes, we have

r d h ,_ _.
L = ,— (2.5)

M " J dt

N = k
d̂ t

where h= i hx + j hy
+ k

h

z
and is the vehicle ' s total

angular momentum.

For linear or translational forces applied along the axes,

F
*

= imdT F
v - jmdT F

*
= kmdT < 2 - 6 >

21
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where v = iv + jv + kv and is the total linear transla-
tional velocity of the center of mass(m) of AROD.

The dynamic characteristics of AROD are represented by

Equations 2.5 and 2.6. Other relationships are required to

solve for each unknown and for each physical force and

moment acting on the body. The development of a complete

model is undertaken now for the specific case of AROD using

actual measurements and experimental data from the proto-

type.

1. Angular Momentum

Equation 2.4 is expanded to become

hx
= I (IX P + I r w r ) + j (IX PR + I r w r R) (2.7)

- k (IX QP + I r avQ)

hy = -i Iy RQ + j Iy Q + k Iy PQ

hz
= i Iz QR - j I z PR + k I z R

where
h =

8t
+ U X h

h = i (IX P + I r wr ) + jI
y Q + kI z R

w = iP + jQ + kR

Combining Equations 2 . 4 and 2.7, the AROD angular moment

equations are:

L = IX P + (Iz
- Iy )QR + IpWp (2.8)

M = I
y Q + (Ix - IZ )PR + RIpWp

N = I Z R + (I
y

- IX )PQ - QIpWp

The rolling, pitching and yawing moments (L, M, and N) may

be induced by the aerodynamics of the body and environment

22
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or by control inputs through the control vanes and are

referred to as the "applied moments". They are discussed in

a later section. Equation 2.8 is next rearranged so that

the unknown variables (dynamic states of interest) may be

determined. Roll, pitch, and yaw rates are:

P = * [(I - I Z )QR - I r w r
- L] (2.9)

Q = ^ [(Iz - IX )PR - RI r u, r
- M]

xy

1R = ^ [(Ix
- l

y
)PQ + QI r a; r

- N]

Already obvious is the mathematical explanation for

the coupling that was observed in the last section. Every

combination of pitch, roll, and yaw are present in Equation

2.9. Pitch, roll, and yaw are each "coupled" to the others.

Additionally, coupling of the rotor angular acceleration

with roll will cause the throttle controlling the propeller

speed to influence these states and further complicate the

system.

2. Force Equations

The expressions describing the translational forces

are developed from the body accelerations which are

vx
= i U + j RU - kQU (2.10)

v
y
= -i RV + j V + k PV

Vz
= iQW - jPW + kW

where v= 1

v

x
+ j v

y
+ k

v

2 and is the total body velocity
vector.

23
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Equations 2.6 and 2.10 are combined and rearranged to obtain

the differential equations containing force terms,

U = (RV - QW) + ~x (2.11)m

v = (pw - ru) + -y

W = (QU - PV) + ^
z

where m is the mass of the vehicle.

Equations 2.11 contain nonlinear terms as did

Equation 2.9. These nonlinearities are in the form of

products of states. The force components Fx ,F
y
,F

z
consist

of lift from the propeller (F
t ) , other aerodynamic influ-

ences (Fa ) , and gravity (g) . F t
and Fa depend largely on

experimental data in this development and are taken up

later.

Gravity is a constant acceleration causing a

constant force in the -X 1 direction (earth-fixed) . Note

that small changes in weight due to fuel loss are neglected.

As the body rotates, the body-fixed axes change relative to

the earth-fixed axes. Therefore, a coordinate translation

is needed to relate gravity to each of the X,Y,Z axes

(gx ,gy,g z ) . The gravity components are given by

i g= i

g

x + j gy + k gz (2.12)

Any translation from earth-fixed to body-fixed axes can be

described by a rotation first about the Euler angle <p, then

24
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e, and lastly 0. Figure 2.3 illustrates these three

rotations and the resulting relationships between coordinate

systems. From Figure 2.3 and Eq. 2.12, the gravity com-

ponents are

gx
= g(cos0 cos0) (2.13)

gy = -g(sini/> cose)

gz
= g(sin0)

The first-order differential equation for translational

velocities can now be written as

U = (RV - QW) + gx + J
x (2.14)

F
m

V = (PW - RU) + gy +
Jy

W = (QU - PV) + gz + ^zF2

m

We now have equations describing the six degrees of

freedom of AROD and the foundation for the model has been

laid.

3 . Kinematic Equations of Motion

The coordinate translation through the Euler angles

<p,Q,ij) resulted in an expression for relating gravity to the

rotating body. However, the price paid for this necessary

convenience is the addition of three more variables (<p,Q,rp)

to the equations. Therefore, three more equations are

needed and, if possible, the three variables <p,9,V> should be

expressed in terms of the existing force or moment vari-

ables. Fortunately a relationship can be found in the
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equation describing the body angular rotations. Angular

movement of AROD has been expressed in terms of the body-

fixed angular rates P,Q,R. It can also be described in

terms of the Euler rates <p , 0, and V as

<j) = iP+jQ + kR=i'(p+ j + k ' (2.15)

A coordinate transformation similar to the^ one

illustrated in Figure 2.3 is possible to relate pitch, roll,

and yaw with the Euler angle rates. However, some simpli-

fications can be made with each rotation since <p,0,i/> are, in

fact, the variables of interest. The resulting transforma-

tion is called the kinematic equations of motion:

e

l

o

sin<p cos<ptan0 * p
"

COS(p -sin<p Q

sin<p
sine

COSip

cose R

m mm

(2.16)

4. Summary of Equations of Motion

Nine equations and nine unknowns have been developed

that completely describe the dynamic behavior of AROD.

P,Q,R, and U,V,W represent the six degrees of freedom and

¥?,e,V>, relate the constant force exerted by gravity to the

body-fixed coordinates. Through the Euler angles, the

behavior of AROD can also be observed relative to the Earth.

Specifically, the translational velocities for the earth-

fixed system U'^V^W 1 can be determined from body-fixed

velocities U,V,W and <p,e,V> using the coordinate transforma-
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tion of Equation 2.13. The applied forces and moments are

made up of external forces and commanded inputs, and are

represented by Fx , F
y , Fz , and L, M, N. AROD can be

pictured as the block diagram in Figure 2.4. The external

influences are taken up next.

C. APPLIED FORCES AND MOMENTS

The applied forces and moments are a result of the

commanded inputs and the movement of AROD through the air.

The commanded inputs can change the rotor speed causing a

change in the lift generated and a torque on the body.

Commands can also come in the form of control surface

displacements which steer the AROD and cause the body to

rotate about its axes. The movement of AROD through the air

will create drag. Drag forces can also apply both transla-

tional forces and angular moments on the body and are a

result of AROD's aerodynamic characteristics.

1. Aerodynamic Characteristics

Two methods exist for determining the aerodynamic

forces and moments on a vehicle [4:p.lll]: (1) by experiment

or empirical analysis and (2) by theoretical development.

The great advantage of (1) is accuracy and the advantage of

(2) is low cost. The fact that AROD is a ducted fan causes

a complex interaction of the rotor with the body, and the

downwash with the control surfaces. Hence, the ducted fan

compounds the accuracy problem and empirical means for
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determining the forces and moments is the most suitable

approach. Sandia National Laboratories has built a proto-

type AROD and has collected data based on wind tunnel tests

of the AROD [6]. This data consists of tabular results

describing the aerodynamic drag coefficients and downwash

swirl effect; stability derivatives; and physical measure-

ments of constants such as weight, moments of inertia, and

servo gains. This data is listed in Appendix A. The

tabular data forms a basis from which applied forces and

moments may be determined once the following flight informa-

tion is known:

(1) Weight ratio of actual AROD to 85 lb prototype. The
data was originally obtained with an 85 lb prototype
and must be scaled for other weights such as the
model discussed here which is 76.5 lb.

(2) Propeller angular speed. Propeller speed is
determined by setting a hover speed (this model 7200
rpm) and calculating changes from the throttle
setting of the engine.

(3) Propeller angular acceleration. Acceleration is
based on the difference between speed calculated
from the throttle and speed at hover. This is an
experimental approximation arrived at by AROD
project engineers.

(4) Translational speed U,V,W. Aerodynamic forces on
the body are based on the speed and direction of
AROD (angle of attack)

.

The forces and moments which result are of two

types: aerodynamic and thrust. The forces and moments due

to the aerodynamic data are referred to as Fa x , Fa y , Fa z ,

and La , Ma , Na . Those due to thrust and propeller con-

siderations are F
t x , F

t y , F t z , and L
t , Mt , Nt .
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No attempt is made in this work to verify the data.

The relationships leading to the forces and moments dis-

cussed in this section are taken verbatim from the informa-

tion supplied by AROD project engineers.

a. Angle of Attack

The tabular data (aerodynamic drag coefficients

and downwash swirl) result in forces and moments relative to

the total velocity vector, Vtot , of the body. A relation-

ship is needed to transform these forces and moments to

body-fixed axes forces and moments. Angles of attack (a,/3)

are the standard relationship for this purpose. Angle of

attack (a) is normally defined as the angle in the XZ plane

between V
t 1

and the X axis. Angle of attack (/?) is the

angle in the XY plane between V. . and the X axis (sometimes

referred to as the side slip angle). [4] The angle of attack

used in this model is defined and illustrated in Figure 2.5.

The resulting relationships are given by

w
sina = — (2.17)vt o t

sin£ =
V

t ot

where Vtot = J U2 + V2 + W2

b. Aerodynamic Forces

The forces associated with the tabulated data

are lift (F
t ) , drag (Fd ) , and side force (F s ) . They are

also depicted in Figure 2.5. The transformation from lift,
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Figure 2.5 Angle of Attack Illustration

drag, and side force is accomplished in like manner to the

transformation in Figure 2.3 and results in

"f

Fr ay =

F
- a z .

* ° -

sinacos/9 -cosacos/9 sin£

-sinasin£ cosasirv? cos/?

-cosa -sina F.

(2.18)

c. Aerodynamic Moments

In similar fashion to the aerodynamic forces,

the moments applied to the body axes as a result of AROD's

movement through air can be derived. These moments are
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referred to as the aerodynamic angular moments of roll,

pitch, and yaw (La , Ma , Na ) and are given as

Ma

sinacos/3 -cosacos/? sin/3"

sinasin^ cosa:sin/3 cos£

•cosa -sina

Rr

(2.19)

where
Y
y

is the yaw moment relative to Vt t ,

R r is the roll moment relative to V
t t ,

P
p

is the pitch moment relative to V
t 1

2. Forces and Moments for Control

The forces and moments previously discussed are

based on observation of an AROD prototype and are external

to the system being designed. A second category is those

forces and moments which are a direct result of the com-

manded inputs. As mentioned earlier, the inputs control (1)

the rotor speed and (2) the displacement of the control

surfaces.

a. Moment Due to Ducted Fan Effects

The AROD in hover (constant rotor speed) closely

resembles a gyroscope. A gyroscope imparts no torque on its

axis if it spins with a constant angular rotation. If the

rotor accelerates (speeds up or slows down) a torque is

applied to the axis. This torque is accounted for in

Equation 2.8. However, AROD is also a ducted fan and the

drag between the rotor tip and the inside body wall creates

a moment about the X axis (P, roll) . The project engineers
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for AROD have determined an approximation for this moment

based on experiment which is given as

Lr r
= .0729 (Aw r

2
) (ft-lbs) (2.20)

where Aw r is the difference between the rotor speed and
hover, Subscript Tr refers to a dependence on the
throttle, and .0729 is a constant due to the duct and is
referred to as K,j uct in Appendix A. _

b. Moments Due to Control Surface Displacement

Command inputs also include the ability to

displace the four control vanes into the downwash from the

duct. As these surfaces are displaced, they impart moments

about the body axes. The vanes are arranged symmetrically

as in Figure 2.6. The vanes are displaced by a servo

mechanism connected directly to the top of each surface.

Vanes (1) and (3) are operated together as "elevators" and

impart a moment about the Y-axis (pitch) . Vanes (2) and (4)

together are the "rudder" and contribute a moment about the

Z-axis (yaw) . Vanes (1) and (3) displaced in opposite

directions and (2) and (4) displaced oppositely work as

"ailerons" to impart a moment about the X-axis (roll)

.

Throughout this work, the term aileron, rudder, and elevator

will be used as defined here. The actual torque applied by

each combination of vanes was determined experimentally and

"constants of effectiveness" were calculated by the AROD

project engineers.
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Figure 2.6 AROD Control Vanes

The constants of effectiveness are referred to

as dimensional stability derivatives when developed theoret-

ically. They are given the symbols L8 e , Me e , N r e , for their

contribution of moments about the roll, pitch, and yaw axes

due to a displacement by the ailerons, elevators, and

rudder. They can be thought of as acceleration quantities

per radian of control surface displacement. The resulting

relationships, concluding in moments about the three body

axes, are
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Lt = Lae^a (2.21)

Mt
= Mee^e

N
t

= Nre 5 r

where 5 is the displacement of the aileron, elevator
or rudder into the rotor downwash. La e , Me e , and N r e

are given in Appendix A.

Theoretically, each set of control surfaces will yield a

constant of effectiveness about each axis (three constants

for each aileron, elevator, and rudder) . The symmetry of

AROD causes negligible cross coupling of control surfaces,

however, and it is ignored. Note also that the effective-

ness of each control vane was determined for one rotor speed

and that the change in downwash associated with the changes

in rotor speeds is also ignored.

3. Servo Equations for Control Surfaces and Throttle

Commanded inputs sent to AROD include "go for-

ward/backward", "go side to side", "turn around", and "go

up/down " . These commands can be satisfied by pitching the

AROD forward or sideways (pitch and yaw) for translational

flight, turning the AROD about its centerline (roll) for

turning about, and changing the propeller speed for altitude

control (throttle) . Second order servo motors are used to

displace each control vane as well as the throttle.

a. Control Surface Servos

The servos for each control surface are identi-

cal. Three equations will describe the operation of the
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elevators, rudders and ailerons. For each of these equa-

tions, at least two servos are actually operating at the

same time on different control vanes. Each servo receives a

command input (voltage) and results in an angular position

for the servo.

Sa
= -H^ - H2 5a + H2 ua (2.22)

Se
= -H^* - H2 5e + H2 ue

5*

r
= -H,5r - H2 <5 r + H2 Ur

where
Ht and H2 are servo gain constants,
ua ,ue , and u

r
are the servo input.

b. Throttle Servos

The servo motor used to open and close the

throttle is identical to the ones used for the control

surfaces. An additional first order system describes the

relationship between the throttle position and the power

delivered to the rotor (thrust, T r ) . The complete third

order system is

S*t
= -H^t - H2 5t + H2 ut (2.23)

Tr
= -Tr + .5(5 t )

The power delivered to the rotor, T r , directly relates to

both the change in rotor speed, Aw r , and the force in the X

direction. These relationships are

Aw r
= T

r
* Pref (2.24)

AFtx = Tr

where Pre f
is a constant relating the rotor speed to the

power delivered by the engine.
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D. ASSEMBLING THE MODEL: PROGRAMMING

In this section, the equations of motion and the

force/moment relationships are represented in a block

diagram of the AROD model developed earlier, and the flow

chart used to program the model is illustrated.

1. The Complete Block Diagram

Figure 2.7 is a block diagram of the complete model

.

For a more detailed explanation of the experimental aero-

dynamic forces and moments, Appendices A and B should be

consulted.

2. Program Flow Chart

The logic flow chart developed to program the

equations and the aerodynamic data is pictured in Figure

2.8. The IBM Dynamic Simulation Language (DSL/VS) source

code used is given in Appendix B [7].

E. SIMULATION RESULTS

Graphical illustration of time response is shown here.

The four inputs ua ,ue ,u r , and u t are applied alternately as

step inputs to the AROD model . A caution to the reader

interpreting these results is appropriate here. The body-

fixed angle rates P, Q, and R are the dynamic states of

interest in the control problem. Emphasis should be placed

on the response of these rates to control input and not on

the earth-fixed Euler angles <p , 0, and V • The Euler angles

are shown here only as a reference for the reader who wishes
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to picture what the vehicle's behavior would be relative to

the Earth. Confusion can result if one tries to directly

associate these angles with the roll, pitch, and yaw. By

way of example (refer to Figure 2.1), the time derivatives

of (p, 0, and it are equal to roll(P), pitch(Q), and yaw(R)

only when <p = and and V a^e small. If the body has

rotated 90° (<p - 90), then Q actually approximates ~ the

derivative of j> and R the derivative of 0.

1. Zero Input Response

Figure 2.9 is the resulting time response of the

model when all control inputs are zero. For zero input, all

control surfaces are parallel with the X-axis and not

displaced into the downwash. The throttle is set for hover

speed. Note that the pitch and yaw axes remain stable and

zero as expected, but the roll axis spins opposite to the

rotation of the propeller. This precession is a result of

downwash swirl which was measured and included in the

tabular aerodynamic data. The propeller downwash is not a

linear flow of air but has a pattern of vortices which

results in a force applied to the control surfaces leading

to a moment about the roll axis.

2. Aileron Input

Figure 2.10(a) is the resulting time response when

the aileron (<5 a ) is displaced and all other control inputs

are zero as in Figure 2.9. Figure 2.10(a) indicates that

the ailerons can be positioned to counteract the swirl
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effect and actually roll the AROD oppositely. These results

also affirm that the roll axis is uncoupled from the pitch

and yaw axes as Equation 2.9 suggests. Figure 2.10(b) is an

illustration intended to show that the roll can be con-

trolled and set to zero when no roll is desired. In this

example, an initial displacement of 5a
= -.0499 on the

aileron control vanes is used and a bias equal to this

initial displacement is added to ua .

3. Elevator and Rudder Input

Figure 2.11 is the result when the rudder combina-

tion of vanes (5 r ) is displaced into the downwash and the

ailerons are set as in Figure 2.10(b) to minimize roll.

Note the severe coupling between the pitch and yaw axes, as

expected. This coupling is a major complication to the

control process and is dealt with in the next chapter.

Figure 2.12 is the result when the elevator combination of

vanes (5e ) is displaced into the downwash, rudder is reset

to zero, and the ailerons set as above. The results are

similar to the rudder observations. In both cases, the roll

has been affected by the pitch and yaw disturbances, a

result of the tabular aerodynamic data which changes with a

and 0. The amplitude of the elevator, however, is greater

than the illustration with the rudder and more clearly shows

the serious problems that these aerodynamic moments present.
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4. Throttle Input

Figure 2 . 13 is the result when the throttle (6 t ) is

opened to increase the rotor speed and all other inputs are

zero. The rotor applies a torque about the roll axis and,

indeed, this influence is seen in the results. The torque

is directed oppositely to the spin direction (-P) and

results in a less negative roll. However, the equations^ for

pitch (Q) and yaw (R) include terms coupled to the propeller

speed through the aerodynamic moments. The aerodynamic

moments are determined by angle of attack which is a

relationship between the body-fixed velocities. As U

increases, the coupling with pitch and yaw becomes more

pronounced, the angle of attack changes, and the moments

determined from the tables change radically. The discon-

tinuity is best observed by the sharp change in roll, pitch

and yaw at .75 seconds in Figure 2.13.

5. Response Without Aerodynamic Moments

It is insightful to observe the behavior of the

model with the troublesome aerodynamic moments removed. The

system behavior without the wind tunnel data supplying the

moments is much more in keeping with expectations. Figure

2.14 is the response of this modified system to a rudder

displacement. Note the similarities of the nutation (Q and

R) and precession (V>) to the gyroscope illustration of

Figure 2.2. Figure 2.15 is the response of the same system

to an opening of engine throttle. This smooth system
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response is clearly more in keeping with how we expect the

actual system to behave.

The validity of the data was not able to be con-

firmed nor is it being challenged here. However, these

results do suggest that the application of the data to the

system model is a problem that is best addressed by the

engineers who derive it.
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III. STABILITY AND CONTROL OF AROD

The equations of motion describing AROD and the forces

and moments which act on AROD were developed in detail in

Chapter II. A computer simulation of these equations

indicated solid stability in hover, but an inability to

remain stable once disturbed from the hover state. There-

fore, a method is needed to maintain stability and drive the

system to a steady-state condition. Additionally, once a

steady-state is achieved, it is necessary to steer the AROD

up/down, forward/backward, side to side, and make it turn

about its axis (roll) . Hence, a method is also needed to

control the AROD and cause it to change from a given initial

steady-state to another desired steady-state. Stability and

control are the topics of this chapter. Specifically, an

algorithm based on optimal control theory is developed in

the form of the regulator problem to address the stability

issue. The regulator is then adapted to the control issue

formulated as the tracking problem of control theory.

First, however, a summary of the entire stability and

control issue is offered. Then, a simplification of the

complete AROD system is made so that standard, well founded

methods may be used to address the stability and control

dilemma.
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A. SUMMARY OF THE CONTROL PROBLEM

The task is to provide an algorithm on which to base a

control system for AROD. The control system intended for

AROD relies on inputs provided by an operator to command

desired outputs. This section discusses the control problem

based on the inputs, the outputs, and the equations which

relate them.

1. Summary of the Complete AROD System

The result of Chapter II was 18 first order dif-

ferential equations which are listed in Table 3.1. Also

listed are the equations for useful quantities which were

derived in modelling the system.

Figure 3.1 is a simple, open loop block diagram of

the AROD system. The block labelled "AROD" represents all

K

AROD
K

Uc(t> ^ > Y f-p
/

•

Figure 3 . 1 AROD Open Loop Model

the equations listed in Table 3.1. The forces, including

gravity, and moments acting on the block are external

influences and are variables in the equations over which the

designer has no control. The inputs of interest are ua , ue ,
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State

P =

Q =

R =

U =

V =

w =

V -

9 =

i =

•

T =

5a
=

• •

• *

TABLE 3 .

1

AROD DIFFERENTIAL EQUATIONS

[(I
y

- I Z )QR - I r u; r + L, + Lt]/I x

[(I z
- IX )PR - RI r ^ r M, + Mt]/Iy

[(Ix
- I

y
)PQ + QI r o; r + Na + Nt

]/I z

(RV - QW) + Fax /m+ Ftx /m

(PW - RU) + Fay /m + Fty /m

(QU - PV) + Fa2 /m + Ftz /m

P + Qsin<p + Rcos<ptan0

Qcos<p - Rsin<p

qM^ + R^^sme cos©

-TP +

-Hi S'a

"Hi <5*

r

"Hi S\

•5(5 t )

- H2 6 a + H2 ua

- H2 5e + H2 ue

- H2 5 r + H2 ur

~~ H2 5^
+ H2 u^

u r , and u
t

. These inputs are voltages applied to servos and

determine the position of the control vanes in the rotor

downwash and the throttle position. The outputs of interest

are <p,9,0, and U. If these outputs can be manipulated at

will, then the rest of the equations, which are derivatives

of these, can be controlled as well.
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2. Optimal Feedback Control

Control systems may be divided into two basic

categories: open loop and closed loop systems. Open loop

control was attempted in Chapter II and is pictured in

Figure 3.1. Step inputs for pitch (Q) and yaw(R) resulted in

severe nutation and oscillations. Open loop control is not

suited to the AROD application. Closed loop (feedback)

control, then, is the direction taken in this work.

A feedback control system is one which tends to

maintain a controlled variable at a fixed steady-state value

[8]. Therefore, a control system must be able to sense

variations in the system variables of interest in order to

apply control to them. For AROD, the outputs are the

controlled system variables. A scheme to relate the output

to the input is the feedback loop and is pictured in Figure

3.2. The feedback matrix, K, must be determined so that a

given control input always results in the same desired

output. Note that the reference control vector, rc , does

not match the commanded input vector, uc , except in steady-

state. The time when rc # Ug is called the transient

response time and is also the time it takes the output to

reach the desired state. It follows that transient response

time should be as short as possible. Note also that the

difference, rc -uc , should be greatest when rc is first

applied and should decay to zero as the outputs reach their

desired state. This will result in a smooth transition of
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Figure 3.2 Output Feedback Model

the output states from beginning to end. In other words,

there should be little or no overshoot of the desired state

by the_ transient states. A good feedback control will

minimize both the transient response time and the overshoot

of the desired state.

A method of feedback control that might minimize

both the transient response time and the overshoot is

optimal control. Its name suggests that optimal control may

provide the optimum solution to the problem of feedback

control for AROD. However, it is more than semantics which

drives the choice of controllers.

First, optimal control lends itself nicely to a

discrete time solution of the control problem. AROD will
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employ an on board, digital computer to perform inflight

stability and control. While a continuous time controller

can be easily discretized in many cases, design of a sampled

data controller will simplify the procedure.

Second, optimal control is ideally suited to state

variable techniques. A state-space approach is desired

because of the enormity of the system and the complexity of

equations. Matrix manipulation utilizing computers will

prove far less tedious than traditional transfer function

methods

.

Third, and by far the most important reason to

select optimal control analysis over classical methods is

the unique ability of optimal control theory to accommodate

multiple-input, multiple-output systems such as AROD [3].

Four inputs and four outputs have been identified. It will

be shown in the next section that, although some separation

of states is possible, severe coupling between other states

precludes a reduction of the system to single-input, single-

output systems

.

Fourth and last, optimal control is known to provide

robust and insensitive solutions to the feedback control

problem. Assuming that an appropriate performance measure

is chosen to determine the optimal feedback gain matrix, K,

the solution can be expected to have a fair degree of

tolerance to plant model inaccuracies. This section

develops an approximation of the full AROD model so that
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troublesome nonlinearities can be dealt with. Therefore,

some inaccuracies are bound to appear in the new, linear

model compared with the nonlinear system of Table 3.1.

Clearly, robustness is not only a desired property of the

controller, it is an absolute necessity if the controller is

to be applicable to both the linear and nonlinear model of

AROD. "*

With the advantages of optimal control comes a

certain drawback: optimal control requires the availability

of all system states [3:p. 22]. Therefore, the feedback

scheme pictured in Figure 3.2 must be modified to include

all system states in the feedback loop. Figure 3.3 satis-

fies this requirement. However, if the system states

Figure 3.3 Full State Feedback Model

are not available from sensor measurements or other means,

computational observers must also be included to provide an
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estimate of the hidden states. Observers add an extra

computational task to the onboard computer, but otherwise

present no problem to the control designer.

B. LINEARIZING THE AROD MODEL

Throughout model development in Chapter II, nonlinear

relationships were identified. These nonlinearities fall

into two categories: nonlinear combination of states (e.g.

Equation 2.8) and discontinuous functions (e.g. table look-

up of aerodynamic force/moment coefficients)

.

A linear approach to controller design is much preferred

over a nonlinear analysis. Three major reasons drive this

preference. First, the theoretical basis for controllers of

linear systems is well developed and easier to implement.

Second, in airplane design, the use of linear approximations

for nonlinear systems has yielded good results for the case

of steady-state flight and small disturbances therefrom [5].

Third, the optimal control solution, K, can often be reduced

to a single, constant gain schedule for linear, time-

invariant systems. A constant gain matrix, K, will mean

that a minimum amount of memory storage will be required of

the on board computer for control implementation [9]

.

In this section, the equations of Table 3.1 will be

replaced with linear approximations based on the small-

disturbance theory, steady-state assumptions, and selected

physical approximations where necessary.
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1. The Small-Disturbance Theory

A straight forward discussion of the small distur-

bance theory is contained in [5:p. 106]. Essentially, if

AROD is assumed to be in a certain steady-state reference

condition, then motion of the vehicle consists of small

deviations from the reference. If this steady-state is

hover (all translational and angular movement is zero) then

each of the states in Table 3.1 will be zero or nearly zero.

This is not a bad assumption in the case of AROD. The

flight condition in which AROD will spend most of its time

is the hover. Only small deviations from the hover will be

necessary to effect translational or angular movement. For

example, a translational velocity forward (along the Z'

axis) of four miles per hour requires only a 15 degree pitch

of the body. The small-disturbance theory and the steady-

state hover assumption result in the following simplifica-

tions:

(1) Products of states are zero since the product of two
small values is an extremely small value.

(2) Derivatives of states are zero since the time
derivative of a small valued time function is
extremely small.

(3) The sine of a state is equal to the state and the
cosine of a state is equal to one. This is the
small angle approximation for angles less than 15
degrees.

Table 3.2 is the set of equations which result when the

above assumptions are applied to Table 3.1. Note that much

of the coupling between states and all of the nonlinear
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TABLE 3.2

SIMPLIFIED EQUATIONS (SMALL-DISTURBANCE THEORY)

State

e

i

P

Q

R

U

V

= p

= Q

= R

-(Ir /Ix )uir + (La + L
t
)/I x

-(I r
/I

y
)w

r
R + (Ma + M

t )/Iy

(I r /Iz )wr Q + (N
a + N t )/I z

g + Fax /m + Ftx /m

Fay /m + Fty /m

w = Faz /m + Ft2 /m

*a
=

•

~H
1
5a

— H2 5a + H2 ua

• •

=
"ffl 5*e

- H2 5e + H2 ue

• •

= "Hi
5*
r

- H2 5 r + H2 ur

• •

= "Hi
5*
t

— H2 6 t
+ H2 ut

products of states have been eliminated. Note that the

derivative term of rotor velocity, w r , remains in the

equation for roll (P) . The term is kept because w r is not a

state and because it is easily approximated. We wish to

keep as much similarity between the linear and nonlinear

models as possible, so physical approximations of

troublesome quantities are important.
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2. Physical Approximations of Forces and Moments

The force and moment terms in Table 3.2 are made up,

in part, of functions of aerodynamic coefficients measured

at discrete AROD flight attitudes in a wind tunnel. The

data, listed in Appendix A, follow no linear pattern and,

instead, are discontinuous functions of angle of attack.

The relationships used to include these data in the non-

linear model were discussed in Chapter II. If a steady-

state condition is assumed, then some simplification of

these forces and moments is possible.

It is not desirable to exclude the aerodynamic data

completely from the simplified model. An analysis of the

magnitude of the forces and moments which result reveals

that they are significant in all flight attitudes. However,

if a constant hover is assumed then only one set of coeffi-

cients need be considered. Hover condition is defined by

AROD project engineers as a=9 0° and /9=0° [6]. In hover

condition, the forces and moments become those listed in

Table 3.3. Note that, for the purpose of Table 3.3, the

total body-fixed velocity is reduced to U. V and W are

assumed zero.

Table 3 . 3 indicates that each force and moment in

hover flight can be reduced to a linear function of a state,

with one exception. Recall from Chapter II, we concluded

that the rotor downwash created a swirl resulting in a force

on the control vanes and a moment about the roll
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Forces

Aerodynamic
Fax =

Fay = U(.0729)

Faz = -U(1.08)

Thrust

TABLE 3.3

HOVER STATE FORCES AND MOMENTS

Moments

Aerodynamic
La

= U( .036)
- Tr (.045) - 1.62

Ma
= U(.81)

Na
= -U(.18)

Thrust
Ftx = (76.5) + T r (2.125) L

t
=-T

r (.5) -Sa (21.29)

Fty = Mt
= -6

e (14.51)

F t z
= N

t
= -5

r (16.68)

Useful Approximations
u r

= 753.98 rad/sec

w
r
= T r (10.472)

axis. This moment was illustrated in Figure 2.10(a). This

same constant moment appears in the equation for roll

moment, LA , in Table 3.3. The compensating factor of .0499,

determined experimentally in the last chapter, can be

derived by dividing the constant moment, -1.06, by the

aileron control vane effectiveness, La e (-21.29). This

constant moment will be eliminated in the linear model, but

will be included in the resulting controller as a constant

addition to the aileron control, ua . The aerodynamic

moments about the pitch and yaw axes are zero in hover

flight. While this poses no problem to the linearizing
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goal, it means that moments in other flight attitudes have

not been approximated. Thus the controller resulting from

the linear model will not consider these external moments.

3 . The Linear Model Assembled

The complete, linearized equations are listed in

Table 3.4. Numerical values for the constant quantities

TABLE 3.4

LINEARIZED HOVER STATE EQUATIONS

State

ip = P

e = q

j> = R

P -

Q =

R =

U

s

I

•

>a

U(.0236) - T
r (3.738) - Sa (21.29)

U(.4831) - R(6.75) -5
e (14.51)

U(.108) + Q(6.78) - 5
r (16.68)

T r (.894)

= -H^l - H
2 5a + H

2
Ua

= -H, s' - H, 8a + H, UI
1 °e 2°e i

2
ue

- -H,^ - H
2 5 r

+ H
2
u

r

= -Ht s\ ~ H
2 5

t
+ H

2
u

t

were taken from Appendix A. The next section will assemble

the equations in a form suitable to determine the optimal

gain matrix, K.
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C. FORMULATING THE CONTROL PROBLEM

1. State Space Representation

The control system of Figure 3.3 is called a

regulator. As discussed earlier, the goal of this regulator

system is to obtain a stable closed loop system which will

force any arbitrary initial states to zero. The first task,

then, is to assemble the state equations in a form suitable

for control analysis. The form desired is given by

x(t) = Ax(t) + Buc (t) (3.1)

where
x(t) is the state vector,
A is the plant matrix,
B is the control matrix,
uc (t) is the control vector.

Note that the A and B matrices do not vary with time. A

time-invariant system greatly simplifies controller design.

The 18 states listed in Table 3.4 are the complete

states of the equations of motion for AROD. However, some

of the states are unnecessary to the control issue and some

additional assumptions will aid in determining the best

control scheme.

The control problem can be simplified if it is

recognized that translational velocities over the ground (V

and W 1 in the earth-fixed horizontal plane) are accomplished

by pitching the AROD forward/backward or side to side.

Therefore, the states important to this task are roll(P),

pitch (Q) , and yaw(R) along with their associated angles.
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The only translational velocity of interest is the earth-

fixed vertical velocity or altitude rate. For small pitch

and yaw angles, then, body-fixed V and W are equivalent to

earth-fixed V and W and will be eliminated from the

equations. Also, the earth-fixed vertical velocity (al-

titude rate) will be approximated by the body-fixed veloci-

ty, U.
"• '

A caution about the angles <p,0,V, is appropriate

here. The linearized equations conveniently eliminated any

dependence on the earth-fixed Euler angles. While this may

be a valid assumption for determining the control solution,

it changes the meaning of the angle states and 0. ip

depends only on the angles and V which will be kept small

in the hover condition, but and V both depend on the

roll (heading) angle, <p, which can range from to 3 60°.

Therefore, the linearized angles b and rph will be used from

here on to remind us that these are body-fixed pitch and yaw

angles and no longer relate the vehicle to the earth-fixed

coordinate system.

The complete, linearized system can now be put in

the form of Eq. 3.1 and is listed in Table 3.5. Figure 3.4

is the complete signal flow graph for the linear system.

2. Stability. Observability, and Controllability

a. Stability

A gyroscope is a stable, open loop device.

Small, bounded disturbances of the roll, pitch, or yaw axes
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TABLE 3.5

STATE-SPACE LINEARIZED SYSTEM

x(t) = ~JP, b ,0b ,U,P,Tr ,Q,R,Sa ,Se <S r ,5 t ,6 a

• •

£]*

A(t) =

To o o o 1 1010
.894

.024 --3.74 -21.29
-10 .5

.483 -6.75 -14.51

.108 6.78 -16.68
1

1

1

1

-157.9 -17.77
-157.9 -17.77

-157.9 --17.77

000 -157. 9 -17
.77J

" 00000000000 157.9 o" t
B(t) = 00000000000 157. 9

00000000000 157. 9

_
00000000000 157.9

Note: t :Ls
•the transpose operator.

produce bounded outputs. The outputs may be in the form of

nutation or oscillations, but it will not grow with time

once the disturbance is removed. This stability was illus-

trated for AROD in Figure 2 . 14 where the yaw axis was

disturbed. The results compared favorably to the response

of a gyroscope.

The open loop linearized system may be tested

for stability also. Since it is linear time-invariant, the
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Figure 3.4 Signal Flew Graph of the Linear System
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simplified system of Table 3.5 is stable if and only if the

eigenvalues of the continuous time plant matrix, A, have

real parts all less than zero [10]. Our system fails this

test for stability since it results in seven out of 16

eigenvalues equal to zero. Therefore, the linear model has

lost some of the characteristics of the nonlinear model.

However, the control algorithm that stabilizes the linear

system and minimizes the time response and overshoot may

still be applicable to the AROD.

b. Observability

Another relationship to test the applicability

of the linearized plant to AROD is observability. An

observable system is one for which all states may be

determined from observations of the output. This is an

important concept since an optimal controller will be

useless if any system states are not known. To determine

the observability of our linearized plant, the outputs which

are available from direct measurement must be known. Refer-

ence 2 indicates that three single axis rate gyros, one

vertical rate gyro, a magnetometer (magnetic heading) and a

barometric altimeter will be available on AROD. Control

vane position based on a history of the input is also

assumed to be known. Table 3.6 is a listing of the states

which will be measured and the device used for each.

The output of the linear, time-invariant system

is given by
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y(t) = Hx(t) (3.2)

where
y(t) is the output vector,
H is the measurement matrix

dimensioned o x n,
n is the number of states,
o is the number of measurements.

TABLE 3.6 _^

MEASURED STATES

Measurement Device State Obtained
Magnetometer <p (heading)
Rate Gyro U, P, Q, R
Control History (Servo) sa , 6 e , S r , 5 t

and from Table 3.6

H =

1
1

1
1

1

1
1

1
1

Observability of a system due to its measured

states can be determined from the observability matrix, W
,

given by [11]

W = [H „ HA „ HA2 „ ... „ HA"' 1

] (3.3)

where
W is a n x mn matrix,
m is the number of states measured.

The rank of W (the number of independent columns) must

equal n if all of the states are observable from output

71



www.manaraa.com

measurements. For the 16 state, linearized AROD system of

Table 3.5, W has rank 10. Although a control solution

might still be found assuming all states were available, it

would not be a realizable controller. Therefore, a dif-

ferent approach must be taken.

Figure 3.4 reveals that the roll(P) and the

throttle(T r ) coupled together and the pitch(Q) and yaw(R)

states are likewise coupled as expected from the gyroscope

analogy. However, these two subsystems are coupled only

through a force/moment relationship dependent on the total

velocity of the body, V
t 1

. In the last section, Vtot was

approximated by U. A further simplification assumes that

the moment on the pitch and yaw axis due to vertical speed,

U, is negligible. The complete 16 state linear system can

now be considered two independent subsystems of eight states

each as pictured in Figure 3.5. State space representation

of the two subsystems is listed in Table 3.7.

Each subsystem has an observability matrix of

rank eight. Therefore, the states required in the subsystem

configuration can be obtained from the measurements.

c. Controllability

A final test of the linearized model, before any

effort is expended in actual controller design, is to deter-

mine whether it is even possible to find a control sequence

such that a desired final state may be reached. This con-

cept is known as controllability [10:p. 205]. The control-
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Figure 3.5 Linear Subsystem Signal Flow Graphs
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TABLE 3.7

STATE-SPACE LINEAR SUBSYSTEMS

Roll/Throttle

Xp T (t) =
u
p

Apt = "0 010 0"
.894

.02 -3.7 -21.29
Tr

0-1 .5

5a

ft
5,a

0000 10000 1

-157.9 -17.77
-157.9 -17.77_

Bpt = 157.91
157.91

t

Pitch/Yaw

*Q.R (t)-

Q
R

AaR
= "0 010 0"0001

-6.75 -14.51
6.78 -16.680000 1

5.r 0000 1 -

5P -157.9 -17.77

l/rj .0000 -157.9 -17.77

BflR
= "0 157.9

157.9
_

*

lability matrix is given by

wc
= [b, ab, a 2

b,

where

n- 1
B] (3.4)

Wc is a nxin matrix,
i is the number of control inputs

The measure of controllability is the rank of Wc . For each

subsystem, the rank is eight. Hence, a control sequence can

be found for the linearized system.
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3. Discretizinq the System

a. Sampling Frequency

We wish to obtain a discrete time, digital

control algorithm. Therefore, the system of Table 3.7 must

be converted to a sampled system. A basis for determining

the sampling interval, AT, is needed. The sampling theorem,

based on the Nyquist criterion requires that [11]:

f = — > 2fN (3.5)

where
fs

is the sampling frequency,
AT is the sampling period,
fN

is the natural frequency of the system.

Multiple-input, multiple-output systems do not

have a single natural frequency. However, if the system is

considered a set of several single-input, single-output

systems then a number of different bandwidths are observed.

The highest bandwidth can be used as the natural frequency

of the entire system for sampling purposes. In this way,

four independent systems, with coupled terms set to zero,

are extracted. The frequency domain transfer functions are

listed in Table 3.8 along with their bandwidths. A Bode

analysis yields the frequencies listed. Each of the

transfer functions also has the describing equation of the

second order servo in the denominator. Second order

analysis yields a servo natural frequency of 2 Hz. Since

the servo frequency is the highest, it will be considered

75



www.manaraa.com

TABLE 3.8

SIMPLIFIED TRANSFER FUNCTIONS AND BANDWIDTHS
Natural
Frequency

.74 hz

.61 hz

Roll
LaeH2<P(S) m _

Ua
(S) S 2 (S 2 +H, S+H2 )

Pitch

Yaw

U

MeeH2efs) _ __
ue (s) s2 (s 2 +H

1
s+H

2 )

NreH2i£sl m _
u r (s) s 2 (s 2 +H

1
s+H2 )

-.89H2Ufs) =
ut (s) s(s 2 +H

1
s+H

2 ) (s+1)

65 hz

03 hz

the natural frequency, fN , of the multiple system. The

sampling frequency is now given as

(3.6)fs > 2fM
=4 Hz

Equation 3.6 is a lower bound on the sampling

frequency that will allow the continuous time system to be

reconstructed once sampled. Selection of the actual

sampling rate is based on engineering judgment which calls

for a factor of 10 between the highest frequency component

and the sampling frequency [12]. A rate of 25 Hz meets this

criteria and yields a sampling period of AT=.04 seconds.

b. Analog to Digital Conversion

The process of conversion is illustrated in

Figure 3.6. The block labelled D-A is a digital to analog

signal converter. The block labelled A-D is an analog to

digital signal converter. The AROD block is the nonlinear
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Figure 3 . 6 Digital System Feedback Scheme

model which has been linearized here. The next step is to

combine the D-A, linear AROD model, and the A-D to obtain a

discrete time representation of the linear, time-invariant

system. Since the present linear model consists of two

subsystems, the task is to convert the two systems and

determine two control systems separately. The discrete

version of the closed loop system is pictured in Figure 3.7.

The discrete form of the system Equation 3.1 is given by

x(k+l)= <()x(k) + Tuc (k) (3.7)

where
k = kAT,
k+l= kAT+AT,
AT is the sampling period,
(J)

is discretized A plant matrix,
r is discretized D control distribution.
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Figure 3.7 Discretized AROD Feedback

The discrete plant and control distribution matrices are

given by [11]

-

r-/.

AAT
(3.8)

T
e
AE

dsB

where
e is the natural logarithm operator,
s is the Laplace operator,
ds is the derivative with respect to s

Equation 3.8 can be solved by using a series

expansion of the matrix exponential and integrated using a

numerical scheme on a digital computer. The program called

ORCONV [13] is used to obtain the discrete time system

matrices of Table 3.9.

78



www.manaraa.com

TABIE 3.9

DISCRETIZED SUBSYSTEMS

4>PT
=

1

1

.0009 1

.0400 -.0030 -.0167 -.0002
.0350 .0004

-.1466 -.8217 -.0015 -.0134
.9608 .0189

.9010 .0275
.9010

-4.334 .4132
-4.334

4>QR
=

TPT =

V0003
.00001

-.0299 -.00003
.0003 .0007

.0990
.0275 .0990

4.334
.4132 4.334

1 .0395 -.0054 -.0113 .0012 -.0001 .00001

1 .0054 .0395 -.0010 -.0130 -.00001 -.0002
.9636 -.2667 -.5530 .0879 -.0090 .0010

.2681 .9636 -.0768 -.6357 -.0009 -.0104
.9010 .0275

.9010 .0275
-4.334 .4132

-4.334 .4132

-.0002 .00001
-.00001 -.0002
-.0203 .0016
-.0014 -.0234
.0990

.0990
4.334

4.334

D. THE OPTIMAL REGULATOR

A review of the linear control problem is appropriate

here. We now have two discrete-time subsystems, each

defined by Eq. 3.7. The roll/throttle subsystem is descri-

bed by the plant matrix
(J)p T

and control distribution rp T
.

The pitch/yaw subsystem is described by (|)Q R and rQ R These

matrices were listed in Table 3.9. We also know that all of

the states in each subsystem are available either by direct

measurement or computational observers. We wish to find the

closed loop feedback matrix, K, in Figure 3.7 such that any
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disturbance of any state from the reference hover condition

(all states zero) will be damped out, returning the states

to zero in minimum time with minimum overshoot. Since each

subsystem is controllable, the control law that satisfies

these requirements is given by [10:p. 771]

uc *(k) = -Kx(k) (3^9)

*where denotes optimal in the minimum time, minimum
overshoot sense.

Note that K is a constant matrix. We state this goal to

reduce to a minimum the amount of computer memory required

to store the feedback gains and, in general, to simplify the

control algorithm. The validity of this approach is born

out by experience with linear time-invariant systems [3].

The applicability of the resulting controller to the

nonlinear system, like the previous linearizing assumptions,

will be determined by the time response of the full AROD

model once K is found. The following paragraphs will

provide analytical justification for the steady-state

approach.

1. Optimal Control

Optimal control theory is concerned with minimizing

a performance criterion chosen by the designer [3:p. 3].

Therefore, the primary focus in developing the controller

should be on a performance measure that quantifies the goals

of the design effort. These goals are summarized here:

(1) Minimize the transient response time
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(2) Minimize the state overshoot

(3) Determine a constant gain schedule, K.

(4) Operate within the physical constraints of the
system.

The performance measure typically used in formulating the

discrete time optimal regulator control solution is

J= pcCN^CxfN) (3.10)
N - 1

+ JZ [x(k) t Q(k)x(k) + uc
(k)tR(k)u

c (k)]
k =

where
J is the cost function,
N is the final time step (NAT)

,

k is the time step index,
Q(k) is the state weighting matrix,
R(k) is the control cost weighting matrix,
C is the final state weighting matrix,
t is the matrix transpose operator.

The proper choice of C, Q(k), and R(k) will ensure that the

control schedule, uc (k) , that minimizes J will meet the

first two of our design goals and minimize the control

effort required.

The solution to Eq. 3.10 for time-invariant systems

is found from the recurrence relation

K(N-k) = -[R(N-k) + r t P(k-l)T]- 1 (3.11)

x Tt P(k-l)(()
and

P(k)= M(N-k) t P(k-l)M(N-k) + K (N-k) * R(N-k) K (N-k) + Q(N-k)

and
M(k) -

(J)

- TK(N-k)
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To meet goal (3) , a constant K, it is necessary to

know that under certain conditions the recurrence relation

converges to a steady-state for large enough k. The

conditions sufficient for a steady-state convergence are:

constant, positive definite weighting matrices Q and R;

final state weight C=0 ; and uc (k) unconstrained [10]. The

final time loses its meaning for the steady-state case since

we assume convergence prior to reaching time-step N.

Equation 3.10 becomes

k c

J= £ [x(k) t Qx(k) + qB (k) t BDe (k).] (3.12)
k =

where kc is the time step when J converges.

The recurrence formula can now be written [13]

K = [R + r^PT]"
1
]?*?^ (3.13)

and
P = M*PM + K*RK + H*QH

and
M = (|)

- TK

where the measurement matrix, H, modifies Q so that only
states of interest are considered.

The revised performance measure appears to have no

dependence on the final state. In fact, the solution, K, is

sometimes referred to as a "suboptimal" gain schedule.

However, experience shows that for time-invariant systems,

the suboptimal gain schedule is often quite satisfactory
. [9

]

2. Selecting the Performance Measure

The weighting matrices Q and R must be selected to

define the cost function used to determine the optimal
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gains. For the linear AROD problem, Q and R are both

diagonal matrices. Each diagonal element of Q corresponds

to a weight placed on the deviation of a particular state

from its desired value. Equation 3.13 introduced the idea

of weighting only certain states utilizing the H matrix.

The states we are interested in weighting are the angle

states, the altitude rate, and the control vane displace-

ments and displacement rates. The angle states and altitude

rates describe the steady-state of the system. The control

vanes are constrained in their movement. Therefore, these

are the states with which we are concerned with controlling

through the gain schedule. A definition of the measurement

matrix, H, strictly for the purpose of the cost function, is

i o o o o o o o"

0100 000
00001000
00000 JL0000000 1000000001

where H applies to both subsystems. The non-zero

elements correspond to <p,U,S a ,5 t ,8 a ,8 t
for roll/throttle

and b ,V>b ,8e ,8 r ,<5e ,5 r for pitch/yaw.

Now Q is a 6x6 matrix. If all the states of interest are

weighted equally, Q is given by

Q =

1

1

1

1
1

1

(3.15)
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This reduction in cost states will streamline the iterative

design process of the gain matrix in the next section.

Each subsystem has two control inputs: ua and u t

for roll/throttle, and ue , u r for pitch/yaw. A control

weight matrix which treats each control cost equally is

- [;:]
(3.16)

The cost function resulting in the best gain matrix

for our purposes may not be the one which weights each state

and cost equally. Factors such as the units a particular

state is scaled to and system constraints on other states

require scaling the diagonal values of the Q and R matrices

accordingly. It may also be more important to drive a

particular state more rigidly than others because of the

dynamics of the system. In the case of AROD, it is most

important to drive the angle states and the altitude rate to

the desired state because the other states, all derivatives

of these, follow. The time response of the angle states and

altitude rate is the standard by which the best cost

function is selected. Therefore, an iterative approach is

taken, altering Q and R as necessary to meet the following

specific objectives: settling time of two seconds to less

than 10% overshoot, and maintaining constrained states

within limitations.

The settling time requirement is chosen for two

reasons. First, the servo response time (second order time
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constant) is .5 seconds which places a lower limit on the

response. The equations are coupled which means action by-

one state will force a delayed, but proportional reaction by

the others. Two seconds for any response on a slow speed

hovering vehicle such as AROD is considered adequate.

Second, if the erratic behavior observed in Chapter II is to

be controlled, then a quick response to disturbances and

commands is necessary.

The control vanes are constrained in displacement to

+.5236 radians (30°) and in velocity to +.8727 radians per

second. The throttle is constrained to +100 radians and

+100 radians per second. The iterative design process must

account for these constraints by weighting the corresponding

elements of the Q matrix. Appendix A lists constraints.

Constraints on the servo states imply that the rate

of change of other states may be restricted as well. A

constraint on the output states means a limit must be

applied to the disturbances from which we expect the system

to recover in the given time. An angular displacement of .1

radians (6°) is a reasonable disturbance to the system.

This does not mean that the system is restricted to motions

within 6° of the hover condition, only that the response

time for which we design applies up to these limits.

4. Iterative Design Process

We are now ready to form cost functions for each

subsystem and determine suitable gain matrices. A numerical
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algorithm for solving Equation 3.13 is discussed in [3:83].

A computer program for iterating the solution and converging

to the steady state is described in [13] and is used to

determine the gain matrices in this section.

Once a gain matrix is determined, the time response

of the linearized, closed loop system can be tested using

the linear system computer simulation in Appendix C. The

process repeats until an acceptable time response is

obtained.

a. Roll/Throttle Subsystem

Table 3 . 10 summarizes the results with various

cost functions. The values for Q are the diagonals of the Q

matrix which are the weights on <p, U, Sa , 8 t , Sa , and 5 t ,

respectively. The values for R are the weights on ua and u
t

in that order.

Iteration (1) is with a Q normalized to account

for scaling differences between states. Results indicate

that the normalized cost function is not adequate. A

shorter response time is desired.

Iterations (2) , (3), (4), and (5) chronicle a

trial and error design process where each succeeding cost

function is chosen based on the response of the previous

ones. A dominant consideration is the coupling between the

throttle and roll states. Since is undesirable to have the

throttle used to correct the roll angle, a heavy cost is put

on maintaining the throttle at the desired state.
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TABLE 3.10

ROWTHROTTIE SUBSYSTEM COST DESIGN ITERATIONS
Settling Overshoot

Cost Initial Time % (absolute) Deviation

#

(1)

Value

<p =.1

<P

4.

U <p

6. 0%

U S 3 &

(0) .02 1

t
5 3 5

3 .2 (D

(2)
.

<p =.1 1.5 3. 12% (0) .03 -.0002 .35 .025

(3) <p =.1 1.5 2.5 10% (0) .03 -.004 .35 .06

(4) <p =.1 1. 2. 6% (0) .07 -.0007 1.2 -.007

(5) <p =.1 1. 2. 3% (-.0001) .055 .0125 .87 .3

U =.1 2. 1. (.004) 5% .045 -3. .275 -50

Cost Functions

(1) (2) [3) (4) [5)

Q R Q R Q R Q R Q R
10 60 20 1 50 1 50 1 50l .1

3 60 1000 .1 2000 .1 2000 .1 2000 .05

60 .1 .01 .01 .01
60 .1 .01 .01 .01

30 1 3 .2 .4

30 .1 .1 .1 .005

The final iteration results in an acceptable

time response and satisfies the state constraints. The

optimal gain matrix, K p

T

converged in 14 iterations at

AT=.04 seconds per iteration. Hence, the steady-state

constant gain schedule is reached after .56 seconds. Since

the settling time is 1 and 2 seconds, our assumption that a

constant gain schedule would provide the optimal solution is

valid.

b. Pitch/Yaw Subsystem

Table 3.11 lists results for the iterative

design of the pitch/yaw subsystem gain matrix. The values
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for Q are the diagonal elements corresponding to b , Vb , 5e ,

S r , Se , and <5 r , respectively. ue and u r are the control

inputs in R.

TABLE 3.11

PITCH/YAW SUBSYSTEM COST DESIGN ITERATIONS
Settling Overshoot

Cost Initial Time % (absolute) Deviation
# Value

(1) =.1 2.

tb fb

1.5 10% (.013

-j£e 8 r 5 c ^r

| .035 -.055 .35 -.<15

(2) = .1 .6 1. 8% (.0125) .08 .045 .6 .5

(3) =.1 .75 1.5 3% (.0125) .05 -.065 .7 -.7

* = .1 1. 1.5 (-.012) 2% .065 .06 .75 .6

Cost Functions

(1) (2) (3)

Q
100

R

T
1
!

Q
"100

R
" 1

Qn
150

R
" 1

100 ij 100 1 150 1

.01
i— _i

.01
^^

.01
.01 .01 .01

2 1 1

2 1 1—
The same procedure as roll/throttle for iterat-

ing through various possible cost functions is used for the

pitch/yaw subsystem. As in Table 3.10, only selected

iterations are listed. Insight gained from the roll/

throttle iterations was valuable in reducing the steps

needed for the pitch/yaw design.

The final gain matrix, KQ R , converged in 13

iterations, or .52 seconds which is less than the settling

time of .75 seconds. Therefore, the steady-state gain

matrix is an optimal solution for this cost function.
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c. Steady-State Gains

Table 3.12 lists the optimal steady-state gain

matrices resulting from the iterative design. A test for

stability places all eigenvalues of the discrete time closed

loop subsystems inside the unit circle. Therefore, the gain

matrix, K, has succeeded in stabilizing the open loop plant.

TABLE 3.12

STEADY-STATE GAIN SCHEDULES

Roll/Throttle

" -1.99 -.603 -.717 .274 1.75 .00994 .140 . 00016"

KPT =

_
-.585 111. -.205 28.9 .582 1.67 .00962 .137

Pitch/Yaw

"-1.61 -1.61 -.553 .320 1.05 -.208 .127 -.00264"

KQR
=

_ 1.57 -1.60 -.305 -.566 .107 1.23 .00096 .130

5. Linear System Optimal Regulator Response

The graphical results discussed here are for the

optimal gains of Table 3.12 applied to the linear model with

state constraints. The DSL/VS simulation is listed in

Appendix C.

Figures 3.8(a), (b) , (c) , and (d) are the regulator

time responses for initial conditions of <p(0) = .l, U(0) = .l,

b (O) = .l, and t/)b (0) = .l, respectively. The design goals for

overshoot and settling time are satisfied for the linear
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system. These results, for which the optimal gains were

designed, are a reference to which results with the non-

linear system can be compared.

E. THE OPTIMAL TRACKER

The optimal gains derived for the regulator can be

extended to the tracking problem. The tracking problem

characterizes the command-response relationship desired to

steer and maneuver AROD. In theory, several approaches to

the tracking problem exist. The method used in this work

utilizes the error state. The control law which applies is

^(k) = -K{x(k) - rc (k)> (3.17)

where rc (k) is the reference (commanded) state vector.

This control law is pictured in Figure 3.9. The error state

Figure 3.9 Tracker Control Scheme
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as it drove the system states to zero in the regulator

problem. A full state reference vector is required which

means a commanded value must be specified for every system

state. The reference vector for the roll/throttle subsystem

becomes

rCpT = [<PC ,UC/ Pc/ Trc ,5ac .6tcf 5ac# 5tc ]
t (3.181

and for pitch/yaw

rCgR = [ee ^c ,Qc ,Rc ,5ec .5rc#lecr5;
c ]

t (3.19)

where the values of the reference vectors may be time
varying and are the desired values of the final state.

Application of Eq. 3.17 to the linear model is described

in Appendix C. Figure 3.10(a) is the response for desired

states <p=e=.l. The response is within the desired limita-

tions for settling time (2 seconds) and overshoot (10%)

.

Coupling is quite pronounced between the pitch and yaw.

Figure _3 . 10 (b) is the response to U=.5 and coupling between

the throttle and roll heading is seen. Finally, Figure 3.10

(c) is the response to a step input on yaw (i)h
= .l). The

results are within specification.

F. RESULTS WITH THE NONLINEAR SYSTEM

The optimal steady-state gains for the linearized AROD

model are determined in the previous section. The goal in

designing the control algorithm is to provide fast response

to disturbances and command inputs, while maintaining

minimum overshoot of the final state. The requirement for
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quickness is driven by the erratic behavior of the full

model in Chapter II when it is disturbed from the steady-

state pitch or yaw positions. This section applies the

linear system controller to the nonlinear model. Results

are given first for the controller applied to the nonlinear

model without the pitch and yaw aerodynamic moments and

second to the full model with all moments and forces.

1. Nonlinear Model without Aerodynamic Moments

Figure 3.11(a) is the nonlinear system step response

for the heading angle, <p. The settling time is 1.5 seconds

which is the same as for the linear system. However, the

overshoot is nearly 15% which is larger than the linear

case. Figure 3.11(b) is the response to a desired altitude

rate, U 1

, of .1. Note that for the nonlinear model, the

altitude rate is derived from the Euler angles and it is no

longer approximated by the body-fixed velocity, U. The

altitude rate settles in less than 1.5 seconds, but the

heading angle, disturbed through coupling, settles in 1.75

seconds with .05 radians overshoot. Still, the system does

settle quickly and with zero steady-state error.

Figure 3.12 is the system response for a desired

state step input on yaw, ipb , of .1. Severe coupling to ip

and U» is observed, while pitch, b , behaves as expected.

The reality of the linearizing assumptions becomes evident

here. The results simply indicate that as the body is
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pitched (or yawed) , some of the altitude holding thrust will

be lost and redirected to a horizontal velocity. Figure

3.13 shows that if the pitch or yaw is kept small enough

(here b = .O3 radians), then the altitude rate can also be

controlled. Figure 3.14 goes a step further and illustrates

that if a bounded input (pitching the body for 1 second) is

applied, then a speed across the ground can be realized

while maintaining the desired heading and altitude rate.

2. Nonlinear Model Complete

Results for the controller applied to the full model

including the troublesome pitch and yaw aerodynamic moments

are shown here. Figure 3.15 is the system response to a

step input on roll (<p=.l) A steady-state error of -.04 is

and is due to the downwash swirl moment previously dis-

cussed. However, coupling to the other states causing the

instability noted in Chapter II has been eliminated by the

controller. Figure 3.16 is the result of a step input for

U' = .5. Coupling of the velocity to the pitch and yaw axes

causes enough of a disturbance in angle of attack to upset

the system beyond the constraints of the control vanes and

the controller is unable to correct it. To illustrate the

behavior of the data to pitching and yawing, Figure 3.17

shows the resulting aerodynamic moments, La , M a , N a , for

step input for altitude rate.
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3. Conclusion

Clearly, the controller is not adequate to deal with

such large discontinuities as the aerodynamic moments

present. The control vanes are the limiting factor.

Therefore, the data or the way it is related to the states

in the model is not correct.

However, we concluded in Chapter II that the

behavior of AROD without these moments closely resembles the

gyroscopic model that we expected. If the controller is

judged based on its performance with the nonlinear model

without the pitch and yaw moments, then the control design

is valid. The fact that the controller maintains stability

while directing commanded inputs to steer and maneuver the

vehicle supports the linear model approach taken in this

work.
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IV. RADIO FREQUENCY ANTENNA DESIGN

A. REQUIREMENTS FOR A RF ANTENNA

Detailed technical requirements for the AROD video

downlink have not been specified by the GATERS project

office as of this writing. Neither have the tactical or

operational requirements been addressed in detail. However,

GATERS project quarterly review conferences have undertaken

discussion of this aspect of AROD and some consensus has

emerged [2]. It is from these discussions and from the

stated operational mission of AROD (see Chapter I) that

assumptions are made on which to base the antenna design.

Several facts are known about AROD which pertain to RF

wave propagation.

(1) Cost and weight are key factors and a simple design
utilizing inexpensive, readily available materials
is most appropriate.

(2) The AROD is intended to be man carried and easily
readied for launch. Rugged, lightweight
construction is required.

(3) A frequency range in the UHF band of 800 to 900
megahertz (MHz) has been tentatively identified for
video signal transmission.

(4) A range of at least five kilometers is required if
AROD is to be operated at the maximum planned
distance from the operator.

(5) An omnidirectional pattern is desired for training
purposes to ensure that the video signal can be
received regardless of AROD's orientation.
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(6) Angular speed of the propeller during hover is about
7200 rpm (120 Hz) and a three blade, carbon fiber
composite propeller is to be used.

(7) The body is made of a carbon fiber composite and the
frame is composed of aluminum. The forebody is
fiberglass.

(8) The AROD contains an on board computer, sensors, and
a radio receiver for the command uplink.

This list by no means includes all of the factors which

contribute to the electromagnetic character of AROD nor does

it address every possible requirement for a RF antenna on

AROD. However, these requirements allow a design goal to be

determined based on the following assumptions:

(1) The 12 Hz disturbance from the rotating propeller
and the command uplink RF signal will not interfere
with the 800 to 900 MHz transmission signal. An
order of magnitude between signals is a common rule
for non-interfering signals. The propeller (7200
rpm) and the command uplink (72 MHz) meet this
constraint.

(2) For the purpose of electromagnetic analysis, the
AROD can be modelled as the cylinder pictured in
Figure 4.1. The cylinder has the outside
dimensions of the AROD main body surface shown in
Figure 1.1.

(3) The carbon fiber body is highly conductive. AROD
project engineers have stated that the composite
used has high conductivity characteristics.

(4) The carbon fiber body will essentially shield out
electromagnetic interference from the on board
computer and sensors.

(5) The antenna will conform to the body of AROD as much
as possible to prevent breakage while being carried
and snagging during operation in closed-in areas.

(6) The antenna will be fixed to facilitate simple
launch preparation.
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Figure 4.1 AROD Model for Antenna Simulation

9. DESIGN SELECTION

A logical point to start the choice of antenna is with

devices already in use on similar vehicles. AROD is most

similar to a satellite in that it is free flying yet not

fast moving and aerodynamic influences are negligible. One

UHF satellite antenna in common use is the mesh array

commonly referred to as the umbrella [14]. However, the

umbrella antenna is neither rugged nor omnidirectional and

would be a poor choice for AROD.

Stripline antennas are arrays of slotted strips which

are surface mounted to a vehicle. The slotted strips are

cut for specific frequencies and are generally not tuneable.
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These antennas are lightweight, able to be flush mounted and

could be made rugged and durable for AROD. Research for

this report has found only L-band and S-band variations of

the stripline satellite antenna in use. However, the

concept of a flush mounted stripline can potentially be

exploited in the development of the UHF antenna for AROD.

[15] A simple antenna to employ is a dipole extending

from the top of AROD or out the bottom. At a transmission

frequency of 800 MHz, the wavelength is

A = % = 14.76 inches (4.1)

where c = 1.18 x 10 1 ° inches/second.

A half-wave dipole, for example would extend 7.38 inches

above or below AROD. This design is not considered here.

Instead, an antenna which conforms to the AROD body is

developed to satisfy two of the needs listed above: the

need for a rugged, fixed antenna and the presence of a

conducting surface (the body)

.

The need for a rugged, fixed antenna is obvious and will

not be discussed further. The conductivity of the AROD

body, however, can possibly enhance the conformal antenna's

radiation pattern characteristics if the body behaves like a

reflecting ground plane. This potential and basic antenna's

which can take advantage of the reflecting body are dis-

cussed in the next section.
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C. THEORETICAL DEVELOPMENT

Two basic designs for the UHF antenna are considered

here. Referring to Figure 4.1, the first is a vertically

polarized dipole or dipole array and
.
the second is a

horizontally polarized loop antenna. The dipole array and

the loop antenna are both very well developed in References

16 and
r

17. This work does not endeavor to recreate or

expand on either books ' theoretical development and the

reader is encouraged to consult these sources if such

information is desired. Instead, a brief explanation of the

important characteristics of the dipole and the loop antenna

is offered as a preface to the practical considerations

which drive the design process.

1. Dipole Array

a. The Half-Wave Dipole

An omnidirectional far field pattern is the

goal. For this reason, a dipole which radiates an omni-

directional pattern is desired. An obvious choice is the

half-wave dipole. Fed at the center, the current on a half-

wave dipole will decrease sinusoidally as it nears the end

points.

A single half-wave dipole yields the far field

pattern of Figure 4.2. The horizontal (azimuth) pattern is

omnidirectional. If the X direction of the dipole cor-

responds to the X direction of AROD then it is the horizon-

tal pattern of the dipole which is of greatest interest in
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Figure 4.2 Far Field Patterns of a Half-Wave Dipole

obtaining an acceptable solution for AROD. Therefore, the

emphasis is placed on obtaining an acceptable horizontal far

field pattern from subsequent antenna designs.

b. Circular Array of Half-Wave Dipoles

A dipole which is close to the AROD body will

have radiation characteristics far different from the free

space or free standing half-wave dipole. The conducting

body will, at the very least, block the dipole pattern in a

direction "behind" or toward the body from the dipole. An

array of dipoles which conforms to and encircles the body
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will allow a signal to radiate through 3 60 degrees in

azimuth (<p) . Such an array is called a circular or ring

array [16:p. 352]. A circular array of identical, equally

spaced half-wave dipoles each excited at its center will

result in a non-directional far field pattern. Figure 4.3

is the resulting far field gain pattern of a four dipole

ring array. Although the pattern is plagued by peaks and

valleys creating a wide dynamic range in directive gain, it

is a good starting point for the design.

The theory and analysis for circular arrays is

well developed and an array yielding an acceptable omni-

directional pattern can be derived using the procedure given

in [16:p. 354]. However, no procedure is found for an array

with an obstructing body in its center. For this reason, a

model of the AROD body which approximates its electromag-

netic characteristics is useful. To such a model, various

arrays can be added and the resulting far field patterns can

be analyzed for adequacy.

2 . Loop Antennas

The loop antenna is an attractive alternative for

the AROD application. A loop would naturally conform to the

body circumference and could be constructed easily. Loop

antennas are thoroughly discussed in Reference 17. However,

analytical results are readily derived only for "small" or

"moderate" sized loops. A moderate size loop is defined as

2Pi^p b < 2.5 (4.2)
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Figure 4.3 Horizontal Far Field Pattern - 4 Dipole Ring
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where
Pi = 3.1415962,
b is the radius of the loop,
A is the wavelength.

A circumferential loop on AROD has a radius b > 15 inches

At a transmission frequency of 800 MHz, the wavelength A =

14.76 inches and equation 4.2 becomes:

2Pi
A

b > 6.39 (f = 800 MHz) (4.3)

Clearly, AROD does not satisfy the requirements for a

moderate size loop.

The difficulty with deriving analytical results for

larger than moderate size loops lies in evaluating the

Maxwell's Equations. Larger loops such as an antenna around

the AROD body require a much more extensive mathematical

development to evaluate the equations than is desired here.

Therefore, a numerical technique with the aid of a computer

is best suited for evaluating the radiation pattern of the

proposed design.

Figure 4.4 is the far field gain pattern of a single

loop antenna with a radius b = 15 inches. While this

pattern is apparently directional and inadequate for the

AROD application, combined with the AROD body model, a

better pattern may result.

3. Ground Plane Effects

Perfect ground planes are defined as infinite,

plane, and perfect conductors. Practical approximations to
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Figure 4.4 Horizontal Far Field Pattern- Single Loop
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a perfect ground plane are planes much larger than A and

good conductors on the order of 107 mhos/meter. [16 :p. 239]

Clearly, a cylindrical surface only slightly larger than 2A

at its greatest dimension can hardly be considered infinite

and plane. Nevertheless, the fact that the AROD body does

conduct suggests that some link to ground plane theory can

be achieved.

Ground plane theory is the study of reflections. An

ideal dipole oriented parallel to a perfect ground plane has

an image in the plane which is directed out from the plane.

The effect is to double the image radiated outward and

perpendicular to the plane. In the case of AROD, the image

is increased outward from the body in the horizontal plane.

Further, since the body surface is curved, the image will be

reflected at increasingly obtuse angles as distance from the

dipole increases. The object of modeling the AROD body is

to determine if this pattern of reflection can be used to

enhance the far field patterns of Figure 4.3 and 4.4 and

obtain an adequate antenna design.

a. Ground Planes and Phase

Before proceeding, an important consideration is

phasing of the signal. The 800 to 900 MHz waveform planned

for the video signal carries with it a period and phase.

The phase of this waveform will vary as the distance from

the antenna increases. Reflection theory stipulates that

the distance a waveform travels to and from a reflecting
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surface can be viewed as a straight line distance from the

original source, in this case the antenna. Thus, a phase

change is associated with any reflection. This phase change

can act to complicate or, at 180 degrees, it can cancel the

original signal. To minimize any such complications, the

antenna should be positioned flush to the reflecting surface

or at a distance resulting in zero phase change in the

reflected signal. Further work, not considered here, might

utilize phasing as a means to steer the pattern as desired.

b. Ground Planes and the Loop Antenna

One very important result of modelling the body

as a conductor and approximating it as a ground plane is

that it will significantly alter the characteristics of the

loop antenna. In fact, a circumferential loop around the

cylindrical body might alternatively be considered a line

source over a ground plane. The "line" is the loop which

carries a current from its source. Unlike a line source,

however, this current would be seen on the loop from two

different directions since the "line" ends are connected

together. With these important differences in mind, line

source effects will play a major part in shaping the numer-

ically generated far field patterns in the next section.

D. BODY MODELLING AND COMPUTER AIDED DESIGN RESULTS

The complexity of the body conforming antenna makes use

of a computer algorithm to model it very practical.
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Although a simple array of dipoles lends itself to analyti-

cal solution, a large loop the size of the one proposed does

not. A computer program written at the Naval Ocean Systems

Center entitled Numerical Electromagnetics Code (NEC) is

available on the Naval Postgraduate School's mainframe

computer [18]. This code is used to obtain the far field

patterns pictured in this work and is very suitable for this

study

.

The AROD body, although it can be pictured as a simple,

conducting cylinder (Figure 4.1), is a very complex electro-

magnetic structure. One approach to simulate such a

cylinder is to construct a wire grid outline. Another

method is to utilize a continuous surface model. Both

techniques are discussed in [16] and both can be modelled

with NEC. In fact, because of the symmetry of the AROD body

and the use of symmetry possible in NEC, the continuous

surface model is somewhat less cumbersome to create. The

modelling process and the resulting computer code are the

subject of Appendix D.

1. Results with Dipole Arrays

The dipole arrays previously discussed are simulated

here with the AROD body model. While array effects are

expected to influence the resulting far field pattern, the

conducting surface of the AROD will contribute significantly

as well. All runs utilize a single center feed on a . 1 inch

diameter wire which is divided into 11 equal segments to
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make a half-wave dipole. The first antenna simulated with

the body model is the four dipole ring array pictured in

Figure 4.5. Note that the array radius b = 15.5 inches.

Figure 4.5 Body Model with 4 Dipole Ring Array

The half inch beyond the body radius of 15 inches is to

account for practical considerations of mounting the dipoles

and to prevent "electrical contact" with the body in the

computer model. Results of the four dipole simulation are

shown in Figure 4.6 and should be compared with the free

standing ring array of Figure 4.3. While the resulting

pattern is hardly adequate, it does demonstrate the benefi-

cial effects of the reflecting AROD body. Directivity has

been reduced.
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Figure 4.6 Horizontal Far Field - 4 Diple Ring and Body
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Figure 4.6 indicates that the body has effectively

duplicated the pattern of each dipole and doubled the

radiating horizontal pattern. Since the pattern multiplica-

tion depends largely on the distance between radiating

sources, an analysis of the spacing is revealing. The

circumference of the 30 inch diameter AROD is 94.2 inches.

The antenna radius b = 15.5 inches yields an array radius of

97.38 inches. The four dipoles, then, are each 24.3 inches

apart along the circumference. In wavelengths this distance

is 1.65A. This is not the optimal spacing. The spacing

sought is pictured in Figure 4.7. If the cylindrical

X AXIS DIRECTED OUT OF PAGE

TOTAL PATTERN V TOTAL PATTERN

Figure 4.7 Pattern Multiplication of Dipoles
Above a Ground Plane

surface can be ignored and instead thought of as a plane,

then the interaction of the dipole patterns can be supposed.

Figure 4.2 showed the horizontal pattern resulting from a
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single half wave dipole. If the surface reflects, then the

patterns from two adjacent dipoles will combine. Dipoles a

half wavelength apart will result in patterns adding exactly

in phase producing sharp peaks and valleys as seen in Figure

4.7. Patterns from dipoles a quarter wavelength apart will

tend to smooth each other. Therefore, spacing close to .25A

is sought to reduce the dynamic range. Equal spacing is

needed to maintain a non-directional array as previously

discussed.

A circumference of 97.38 inches and wavelength A =

14.76 inches yields no whole multiple of .25. Table 4.1

lists the multiples of quarter wavelength spacing

TABLE 4.1

OUARTER WAVELENGTH SPACING OF DIPOLES

Approximate Number of Actual
Soacina Diooles Soacina

A/4 26 3 . 7 inches

3A/4 9 10.8 inches

5A/

4

5 19 . 3 inches

7A/

4

4 24.3 inches

circumference= 97.8 inches
A/4= 3.69 inches (800 Mhz)

possible on the body. Four dipoles did not yield an

acceptable pattern. Figure 4.8 is the result of five

equally spaced half-wave dipoles. The pattern is clearly
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more smoothed although more complex than the four dipole

case. The horizontal, vertical and total patterns are shown

in Figure 4.8, but the total pattern (solid line) is of most

interest here. In this case the smoothing effects of the

reflecting body has reduced significantly the sharp drop off

in directive gain characterized by the four dipole example.

The case of a nine dipole array deserves some

practical discussion about feed points. The problem of

feeding multiple points in phase from one transmitter, as in

the case of AROD, is easy to overcome on the computer but

more difficult with actual components. Finite distances

exist between transmitter and feed point and phasing is

simplified with fewer feed points. Additionally, power

losses associated with resistive antennas may become too

great with multiple loads. Therefore, for the nine dipole

array, the simulation will consider only three equally

spaced feed points.

Figure 4.9 shows the results of this arrangement.

While not a very omnidirectional pattern, the nine dipole

case reveals that reducing the number of feed points does

not increase the directivity and, to the contrary, reduces

the severity of the peak to valley gain difference of

dynamic range. With this observation in mind, the five

dipole antenna which produced a smoother pattern may be

enhanced with fewer feed points. Figure 4.10(a) is the

result with only one feed point at <p = on the five dipole
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Figure 4.8 Horizontal Far Field - 5 Dipoles with Body
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Figure 4.9 Horizontal Far Field - 9 Dipoles with Body
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array. The far field pattern is greatly improved over the

five feed case and the dynamic range is greatly reduced.

Figures 4.10(b) and (c) are vertical cuts over zenith (0)

for two different azimuth angles. The patterns are non-

directional and show some promise as a suitable antenna.

2. Results with Loop Antennas

Two variants of the loop antenna with AROD body

model are studied here. As in the case of the dipole

arrays, reflections play a major role in improving the far

field pattern over the free space results of Figure 4.4.

The loop is a single, circumferential wire pictured

in Figure 4.11. The first variant has one feed point at <p -

0. The horizontal pattern which results is shown in Figure

4.12(a) and differs markedly from the free standing loop

pattern. While the gain peaks of the free standing pattern

can be detected in Figure 4.12(a) at <p — 0, 60, 120, 240 and

3 00 degrees, the other peaks which give a desirable non-

directional far field are not a result of the loop theory

analysis. However, if the antenna is viewed as a line

source as previously discussed, this pattern is essentially

an 800 MHz wave propagating along the wire. A peak is seen

every quarter wavelength with only slight variation at <p =

180° probably due to opposing currents meeting at this

point. The currents are not in phase when they meet since

the distance travelled (half the circumference) is not a

whole multiple of . 5A. The 97.38 inch circumference fits
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Figure 4.10 (a) Horizontal Far Field
5 Dipoles with Body
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Figure 4.10 (b) Vertical Far Field (<p=0)

5 Dipoles with Body
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Figure 4.10 (c) Vertical Far Field (v?=45° )

5 Dipoles with Body
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Figure 4.11 Single Loop and Body Model

a 6A line source with a feed at <p = 0. The peaks which are

seen on the far field pattern of Figure 4.12(a) can be

viewed ^s the peaks which result from the line source.

The far field pattern of the single feed loop is

further described in Figures 4.12(b) and (c) . For the case

when <p = 0, the zenith or vertical pattern resembles that of

a long (6A) lines source endfire array as described in

[16:p. 180]. Discrepancies between the theoretical endfire

far field and that pictured here are the result of (1) the

fact that this antenna is a loop, (2) an actual line source

lenght of 6.5A, and (3) opposing currents due to the shape

of the wire as a loop.
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Figure 4.12 (a) Horizontal Far Field - 1 Loop 1 Feed
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Figure 4.12 (b) Vertical Far Field (<p=0)

One Loop - One Feed
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Figure 4.12 (c) Vertical Far Field (<p=45)
One Loop - One Feed
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The second variant is a single loop with two feed

points fed out of phase. The feed points are at <p=0 and

<p=18 degrees. The horizontal pattern is shown in Figure

4.13 and has more directivity than the single feed case.

E. ANALYSIS & DESIGN CONCLUSIONS

1. Analysis

The goal of the design process was to model the AROD

body and determine some basic antennas that yield omnidirec-

tional horizontal far field patterns. An iterative approach

utilizing numerical techniques in the form of NEC was used

to screen various designs. Only a few of these designs were

discussed.

The physical requirement most restrictive to the

design was that it conform to the cylindrical AROD body.

This constraint led to the choice of half-wave dipole arrays

and a loop. The study did not result in a perfectly

omnidirectional antenna, but two designs which show poten-

tial for refinement may have been found. Adequacy in this

case is judged by the dynamic range that a radio receiver is

required to have in order to sense an 800 MHz signal

regardless of the orientation, in azimuth, of AROD. In

other words, the horizontal far field pattern of the AROD

must have a minimum dynamic excursion between peaks.
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Figure 4.13 Horizontal Far Field (6=0)
One Loop - Two Feed
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2. Conclusions

The two designs which present the best potential in

for refinement are the single loop, single feed and the five

dipole, single feed array. This conclusion is a result of

their overall, relatively smooth horizontal pattern. Both

of these antennas are described in terms of horizontal and

vertical far field patterns in Figures 4.12 and 4.10.

The most important assumption which was made,

relative to the resulting patterns, is that the AROD body is

a good conductor. This assumption is based on the electri-

cal characteristics of the carbon fiber composite used to

construct the body. It should be noted that this conducting

shield is needed to provide the reflecting surface exploited

by the antenna designs as well as to shield frequency

interference between the antenna and the electronics

internal to AROD.
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V. CONCLUSIONS

A. DYNAMIC MODEL

A computer model of the ducted fan hovering vehicle,

AROD, was developed by considering the vehicle as both a

gyroscope and as a flying vehicle. Experimental data was

integrated with the model to simulate the forces and moments

which act on AROD in flight. Problems with the application

of some of the data to the computer model were experienced.

However, the model without the problematic data behaved as

expected of such a device.

B. CONTROL

A linearized approximation of the nonlinear model was

developed so that optimal control could be used to obtain a

steady-state gain matrix with the ultimate goal of controll-

ing the nonlinear computer model. Optimal control proved a

viable means of determining a constant gain schedule for the

multiple-input, multiple-output linear system. The result-

ing controller also found application to the nonlinear model

with the problematic data removed.

C . ANTENNA

Two basic antenna designs were analyzed for use as an

omnidirectional antenna for a UHF video downlink on the
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AROD. A five dipole array and a single loop antenna were

found to have the best potential of the designs which were

tested using a computer simulation. The body of the AROD

was found to significantly alter the directivity charac-

teristics of the antennas.

D. FURTHER WORK

In the areas of dynamic modelling and control of AROD:

(1) The aerodynamic data and its application should be
verified.

(2) A training simulator based on the linear model can
be implemented utilizing the gain schedule derived
here on small, readily available computers.

In the area of a UHF antenna:

(1) Modelling the entire AROD including the forebody and
testing the designs for variation from these
results.

(2) Modelling multiple loop antennas with differing
phasing in an effort to steer the vertical pattern.

(3) Analyze the antennas for power requirements as
weight of batteries and power supplies is critical
to the AROD.

(4) Test the designs on the AROD prototype for
suitability.
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APPENDIX A

EXPERIMENTAL DATA

Empirical data received from Sandia National

Laboratories is listed here. This data was obtained

experimentally through measurements and wind tunnel testing

1. Weights and Moments of Inertia

Description Name

Weight of Prototype WtPro

Weight of Model WtMod

Moments of Inertia:
about X-axis
about Y-axis
about Z-axis i

y

Products of Inertia: (assumed) 1=1=v
' xy xz

Moment of Inertia of Propeller
about X-axis I r
about Y-axis (assumed)
about Z-axis (assumed)

Propeller Weight (derived) PropWt

Value (units)

85 (lbs)

76.5 (lbs)

1.5246 (ft 2 lbs)
1.6767 (ft 2 lbs)
1.6684 (ft 2 lbs)

1=0
yz

.015012 (ft 2 lbs)

4.50017 (lbs)

2 . Hardware Characteristics

Propeller Efficiency
Minimum Thrust of Engine
Maximum Thrust of Engine
Maximum Throttle Setting
Maximum Change in Throttle
Propeller Speed at Hover
Propeller Compensation
Max Deflection of Vanes
Max Def Rate of Vanes

Pref
Thr
Thr
TA

min
max

max
maxRT

HovRat
RHo
MaxDef

10.472 (rad/lb-sec)
35
115
100
100
7200
.0019
.5236

(lbs)
(lbs)
(lbs/sec)
(lbs/sec*
(rpm)
(ft-lbm )

(rad)

)

MaxRatDef .87266 (rad/sec)
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Description Name Value (units)

Control Surface Effectiveness
Aileron L -- -21.29 (sec )

Rudder M f£ -14.51 (sec i)
Elevator N

ee^ -16.68 (sec )rerr

3. Aerodynamic Data

The data listed in the table below is obtained from wind

tunnel tests. The manner in which it is applied in the

simulation (relationship to forces and moments on the AROD

body) is given in the next section.

Angle of Attack, AOATOT = V (a2 + p
2

)

Name 50 55 60 65 70 75 80 90

CRdel — — — .0807 .0743 .0712 .881 .085
Rslope .1514 .1533 .1673 .1977 .1834 .1764 .2041 .20
Req 9.293 8.82 8.115 7.848 7.347 7.134 5.011 0.0

CPdel — — — .3106 .3081 .3305 .3515 0.0
Pslope .5633 .5123 .6974 .7612 .7603 .8189 .8853 .90
Peq 43.14 31.00 29.58 26.74 24.55 20.43 15.17 0.0

CYdel — — — .0024 -.002 .0090 .0120 0.0
Yslope^0609 .0663 .0215 .0060 -.004 .0223 .0302 .04
Yeq .555 .576 .006 -.09 -1.63 -1.77 -1.74 -1.8

VanEff — — — 1.5 1.5 1.5 1.9 1.0
Veq 51.62 44.96 38.56 32.94 27.76 21.83 13.31 0.0

CLdel — — — .2428 .2391 .1907 .1734 .1046
Lslope .7954 .7183 .6598 .5949 .5901 .4726 .4366 0.0
Leq 85. 85. 85. 85. 85. 85. 85. 85.

CDdel — — — .5754 .6052 .5922 .4966. 3890
Dslope 1.302 1.313 1.371 1.410 1.493 1.467 1.251 1.2
Deq 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CSdel — — — .0091 .0258 .0331 .0318 0.0
&Sslope .0801 .0801 .0801 .0801 .0801 .0801 .0801 .0801
Seq 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NOTE: (— ) indicates that no data under this heading was
received for this angle.
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4. Aerodynamic Forces and Moments

The aerodynamic data listed in paragraph 3, above,

results in forces moments about the velocity axes, V. .

.

The relationships developed by the engineers who obtained

the data are reproduced here. Some convenient groupings of

constants and parameters of the system are given here.

WtModWtRat =
WtPro

Vdelta = V
tQt

- y
7 (WtRat) *Veq (AOATOT)

RHovA = RHo*Pi* (WtRat) *Veq (AOATOT)

ur = angular speed of propeller (rad/sec)

UseDel = -wr*RHovA*WtRat

UseEq = (1 + - *wr ) *WtRat

UseSlp = WtRat* (Vtt - /(WtRat) *Veq (AOATOT)

The Forces and Moments which result from the

aerodynamic data are given here.

FORCES (with respect to gtotJ

Due to Body Aerodynamics

Pal° UseDel*CLdel (AOATOT) + UseSlp*Lslope (AOATOT)

Fa^= UseDel*CDdel (AOATOT) + UseSlp*Dslope (AOATOT)

Fas= UseDel*CSdel(AOATOA) + UseSlp*Sslope

Due to Thrust Force Aerodynamics

Ftl= UseEq*Leq

Total Aerodynamic Forces

Fl= Fal + Fti

Fd= Fad

Fs = Fas
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MOMENTS (with respect to Vtot^

Due to Body Aerodynamics

Rar= UseDel*CRdel(AOATOT) + UseSlp*Rslope (AOATOT)

Pap= UseDel*CPdel (AOATOT) + UseSl.p*Pslope (AOATOT)

Yay= UseDel*CYdel (AOATOA) + UseSlp*Yslope (AOATOT)

Due to Thrust Force Aerodynamics

Rtr= UseEq*Req (AOATOT)

Ptp
= UseEq*Peq (AOATOT)

Yty= UseEq*Yeq (AOATOT)

Total Aerodynamic Moments

Rr= Rar + Rtr

Pp= Pap + Ptp

Yy= Yay + Yty
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APFQJDIX B

SIMDIAnONS SOURCE CODE

1. Sinple Gyroscope Similation

The following source code is a Dynamic Simulation Language (DSL)

program to simulate the APOD as a gyroscope. This simulation is

discussed in Chapter II.

TITLE BASIC AROD GYRO SIMULATION
*

CONST I RX = 69 . 52, IXX=7063.39, IYY=7768.22, IZZ=7729.58,URX=784

I N I T

P0= .

Q0 = 0.

R0= 0.

MX = .

MZ = 0.
*

DYNAMI C

IF (TIME .LT. TO) THEN

MY =

EL^E
*** STEP INPUT ***

T1 = TO DUR

MY = AMP*(STEP(T0) - STEP(T1>)
END IF

DER I V

HX = IRX*WRX + IXX*P

HY = I Y Y*Q

HZ = I ZZ*R
PD =( - 1 . *HZ/ I XX )*Q (HY/IXX)*R + MX/IXX
QD =(HZ/IYY)*P - (HX/IYY)*R MY/IYY
RD =( - 1 . *HY/ I ZZ )*P <HX/IZZ)*Q MZ/IZZ
P = I NTGRL ( P0 , PD

)

Q = I NTGRL (Q0 ,QD )

R = I NTGRL( R0 , RD

)

*

PARAM T = 1 , DUR = 1, AMP = 10000
CONTROL FINTIM=5, DELT=.05
SAVE . 05 , P , Q , R , MY

PRINT . 1 , MY , P , Q ,

R
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GRAPH (G0,DE = TEK618) T I M E ( N I = 5 , U N = S E C ) M Y ( U N = ' L B - I N ( SQ ) )

LABEL (GO) INPUT TORQUE
GRAPH (G1 ,DE = TEK618) T I M E ( N I =5 , U N = S E C ) P ( UN =

' R AD I AN S / S E C '
, N I =3 , . . .

SC = 2 . , LO=- 2 . ) Q( L I =3, N I =3 , SC = 2 . ,
LO=- 2 . ) R(LI=4,NI=3, ...

SC = 2 . , LO=- 2. )

LABEL G2 ROLL, PITCH, YAW RESULTING FROM STEP PITCH INPUT

END

STOP

2. Complete Equations of Motion Simulation

The following source code is the DSL program used to generate the

results discussed in Chapter II for the complete AROD model. Notation

follows that of Appendix ADATA wherever possible. Data listed in

Appendix ADATA is also reproduced here in the form used by DSL.

TITLE AROD EQUATIONS OF MOTION - FULL MODEL, NO CONTROL - 7 MAY 87

CONST GRAV= 32.174, PI= 3.1415962
ARRAY TRANS<9), ABTRAN(9)
*

**********************************************************************
* MNEMONICS *

CR/P/YDEL == ROLL/PITCH/YAU COEFFICIENTS
* R/P/YSLOPE== ROLL/PITCH/YAW SLOPES OF COEFFICIENT CURVES *

* THRMIN/MAX== THRUST FORCE LIMITS (LBS) *

* R/P/JLEQ == EQUIVALENT RO L L / P I T C H / Y A W FORCE FACTOR *

* VEQ == EQUIVALENT VELOCITY FACTOR *

* VANEFF == CONTROL SURFACE EFFECTIVENESS *

* CL/S/DDEL == L I FT/SIDEFORCE/DRAG COEFFICIENTS *

* L/S/DSLOPE = = L I FT/S IDEFORCE/DRAG SLOPES OF COEFFICIENT CURVES *

* FRCSLG == CONVERSION FOR I
N ** 2 - L B ( F OR C E ) TO FT**2-SLUGS *

* WTRAT == RATIO OF AROD WEIGHT TO WIND TUNNEL MODEL WEIGHT *

* P/Q/R == ROLL/PITCH/YAW ANGLE RATES FOR EOM (RAD/SEC) *

* UU/VV/WW == BODY-FIXED VELOCITY COMPONENTS ( X / Y / Z ) ( F T / S E C )
*

* PH I/THT/PSI == EARTH-FIXED EULER ANGLES (RADIANS) *

* ALPHA/BETA/AOATOT== ANGLES OF ATTACK (RADIANS) *

* DELE/R/A == ELEVATOR/RUDDER/AILERON/THROTTLE POSITIONS BASED ON *

* IDENTICAL SERVO EQUATIONS (RADIANS) *

* THROT == CHANGE IN THRUST FORCE BASED ON THROTTLE SERVO (LBS)*
* ALT == ALTITUDE BASED ON INTEGRATION OF VERTICAL SPEED (FT)*
* U/V/WERTH == EARTH FIXED VELOCITIES (X/Y/Z) (FT/SEC) *

* GRNSPD/D I ST = = SPEED AND DISTANCE (NO DIRECTION) OVER G R OUN D ( F T / S
)

*

* THRHOV == THRUST FORCE REQUIRED IN HOVER (LBS) *

* HOVRAT == ANGULAR RATE OF PROPELLER IN HOVER (RAD/SEC) BASED *

* ON EXPERIMENTAL DATA *

* THR == TOTAL THRUST FORCE (LBS) *

* *
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*

*

*

*

*

»

*

*

*

*

*

*

*

#

*

*

NEWVEQ == IMPIRICAL DATA FOR VELOCITY CALCULATIONS
VDELTA == EQUIVALENT VELOCITY FOR FORCE CALCULATIONS (FT/SEC)

RHOVA == WEIGHTING FACTOR FOR AERO COEFFICIENTS BASED ON

VEQ AND AOATOT
DELTIP == CHANGE IN ROTOR ANGULAR VELOCITY (RAD/SEC)
VTIP == ROTOR ANGULAR VELOCITY (DISCRETE) (RAD/SEC)
USEDEL/SLP/EQ== COMBINATIONS OF VARIABLES WITH WHICH AERODYNAMIC

DATA CAN BE USED FOR MOMENTS AND FORCES (UNITS BASED ON DATA
L/S/DAF == LIFT/SIDE FORCE/DRAG AERO FORCE COMPONENT (LBS)
L/S/DTF == LIFT/SIDE FORCE/DRAG THRUST FORCE COMPONENT (LBS)

FAX/Y/Z == AERODYNAMIC FORCES (LBS)

FTX/Y/Z == THRUST INDUCED FORCES (LBS)

R/P/YAM == ROLL/PITCH/YAW AERODYNAMIC MOMENT COMPONENT (FT-LBS
R/P/YTM == ROLL/PITCH/YAW THRUST MOMENT COMPONENT (FT-LBS)
LA/MA/NA == ROLL/PITCH/YAW AERODYNAMIC MOMENT (FT-LBS)
LT/MT/NT == ROLL/PITCH/YAW MOMENT DUE TO THRUST/ROTOR (FT-LBS)
GX/Y/Z == BODY-FIXED GRAVITY COMPONENT (FT/SEC**2)

*

)*

*************************************************
********* EXPERIMENTALLY OBTAINED DATA

***************
***************

*

* •

* *

*****************************^

UNITS

MOMENTS OF INERTIA
FORCES
MOMENTS
ANGLES

ANGLE RATES
VELOCI TIES

***********************************

I XX , I YY , I ZZ , I RX

FATX , FATY , FATZ , ETC

LAT , MAT , NAT ,
ETC

PSI , THT , PH I

PSIDEG , THTDEG, PH IDEG
P.O. R

UU, VV, WW.UERTH , ETC

WR

LB- FT - SEC**2
LB

LB- FT

RAD I ANS

DEGREES
RAD IAN / SEC

FT / SEC

RAD IAN / SEC

*

»

*

*

*

ONST IXXM = 7063 .39 , I YYM = 7768 . 22 , I ZZM = 7729 . 58, I RXM = 69 . 552 , WEIGHT= 76

MEASURED IN**2-LB IN**2-LB IN**2-LB IN**2-LB LB

CONST PROPWT= 4.50017, PROPEF= 10.472, RHO= .00192
* LB UNITLESS PROPELLER WE I G H T / E F F I C I E N C

Y

CONST THRMIN= 35., THRMAX= 115.
* LB LB MIN/MAX THROTTLE POSITION
CONST TAMAX= 100., RMAXT= 100.
* LBS/SEC LB/SEC*SEC MAX CHANGE/RATE OF CHANGE OF THRUST
CONST MAXDFL= .5236, RMAX= .87266
* RADIANS RAD/SEC CONTROL VANE MAX DEFLECTION & RATE

CONST LAEFF= -21.29, MEEFF= -14.51, NREFF= -16.68
* ROLL, PITCH, YAW VANE EFFECTIVENESS
CONST H1= 17.77, H2= 157.91, H G 1 = 219.912, HG2* 24674.126
*ELEV, RUD, AIL, THROTTLE GAINS/ GYRO GAINS
*

CONST WE= 1 . , K= .5
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* THROTTLE INTEGRATION LOOP GAINS
CONST ALPMIN= .8727, ALPMAX= 1.570796, AOAMIN= 50

* ANGLE OF ATTACK LIMITS FOR TABLE DATA REFERENCE
AOAMAX= 90.

AERODYNAMIC PARAMETERS FROM WIND TUNNEL TESTS **********

ALL TABLE DATA IS A FUNCTION OF ANGLE OF ATTACK (TOTAL),
AOATOT RANGES FROM 50 TO 90 DEGREES.

* NOTE:
*

*

*************************

AFGEN CRDEL = 50, . 0807,

70, .0743,

1514,

1834,

AFGEN RSLOPE 50,

70,

ROLL DATA

55, .0807,

75, .0712,

5 5, . 1533,

75,

.

1764,

********************************

60, .0807, 65, .0807, . .

.

80, .0810, 90, .0850

60, . 1673, 65, . 1977, ...

90, .2000

FGEN2 REQ =

*************************

80, .2041 ,

8,2,16, 50,55,60,65,70,75,80,90, 0,10, ...

9.293,8.5, 8.82,7.1, 8.115,7.2, 7.848,6.4,
7.347,5.9, 7.134,5.4, 5.011,4.67, 0.0,0.0

PITCH DATA *******************************

AFGEN CPDEL

AFGEN PSLOPE =

FGEN2 PEQ =

**************

AFGEN CYDEL

50,

70,

50,

70,

8,2
34.

24.
* * * *

AFGEN YSLOPE

FGEN2 YEQ

50,

70,

50,

70,

8,2
0.5
- 1 .

• * *

AFGEN VANEFF = 50,

70,
* * * *

**************?

***************

FGEN2 VEQ =

**************

8,2,
1 .61

7.75
* * * *

AFGEN CLDEL = 50,

70,

AFGEN LSLOPE = 50,

70,

85.
* * * *

.3106,

.3081
,

.5633,

. 7603,

,16,

138,11

545,6.
******

.0024,
- .0015

.0609,
- .0038

.16,

55,0.0
634, - 1

CONTRO
1.5,

1.5,
.

VELO

16, 5

6,44.9
7,21 .3
*******

.2428,

.2391 ,

.7954,

.5901
,

55

75

55

75

50,5

.69,

78,
* Y

55

. 7

55

, 75

50,5

4,

3,
L SU

55,1

75,1

CI TY

0,55

3, 4

1, 2

L

55

75

55

75

,.3106,

, -3305,

, .5123,

,.8189,
5 ,60,65
31 .002

20.427
AW DATA

, .0024,

5, .0090

, .0663,

..0223,
5,60,65
0.576,

- 1 .771

,

RFACE E

.5, 60

.5, 80

COMPEN

,60,65,
4.955,3
1 .829, 1

I FT DAT

,.2428,

,.1907,
,.7183,

,.4726,

60, .3106, 65 , .3106

80 , .35 1 5 , 90 , . 0000

60, .6974, 65 , .7612

80, .8853, 90, .9000

,70,75,80,90, 0,10,

,10.45, 29.576,9.72,
,4.66, 15. 168, -0.53,
*******************

60, .0024, 65, .0024
,• 80, .0120, 90, .000

60, .0215, 65, .0060

80, .0302, 90, .0400

,70,75,80,90, 0,10,
- .51 , 0. 006, - .46,
- .55, - 1 .736, -1.1, - 1

FFECTIVENESS *******

,1.5, 65,1.5, ...

,1.9, 90,1.0
SATING FACTOR

70,75,80,90,
9.11, 38.564,33
5.06, 13.314, 1 1

A

26.738,9.44, . .

0.0, -5 .92
**************

09, - .49,

.8,-1.2
**************

********************

,10, ...

.00, 32.935,27.45, .

.

.65, 0.0,0.0
********************************

60, .2428,

80,

.

1734,

60, .6598,

80, .4366,

65, .2428, ...

90, . 1046

65, .5949, . . .

90, .0000
CONST LEQ =

**************

AFGEN CDDEL =

AFGEN DSLOPE

CONST DEQ

50,

70,

50,

70,

0.0

******* DRAG DAT

.5754, 55, .5754,

.6052, 75, .5922,
1 .3017, 55,1.313
1.4933, 75,1.467

********************************

60, .5754, 65, .5754, . .

.

80, .4966, 90, .3890

1 , 60, 1 .371 1 , 65, 1 .4103,

4, 80, 1 .2507, 90, 1 .2000
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************************** SIDE FORCE DATA *

AFGEN CSDEL = 50,. 0091, 55, .0091, 60, .0091,

CONST SSLOPE =

CONST SEQ

70, .0258,
.0801

.

75, .0331 , 80, .0318,

65, .0091 ,

90, .0000

**********************************************************************

INITIAL
*

*** eg
*****

NVERS I ONS

FORCE TO SLUGS AND IN**2 TO FT**2

FRCSLG= 1 . /(GRAV*144 . )

IXX= IXXM*FRCSLG
I Y Y = IYYM*FRCSLG
I ZZ= I ZZM*FRCSLG
I RX= I RXM*FRCSLG

MOMENTS OF I NERT I A

I YMI Z= I YY - I ZZ

I ZMI X= I ZZ - I XX

I XM I Y= I XX - I YY

IASS= WE I GHT/GRAV
ITRAT= WE I GHT/85 .

**********************

PO

00 >

RO =

UO =

VO =

UO

PH I =

THTO =

PSV0 =

DELED0=
DELEO
DE LRD0 =

DELRO =

DELAO0=
DELAO =

DLTRDO=
DLTRO =

THROT0=
ALTO
GRNSPO=

0.

0.

.

0.

0.

0.

0.

0.

0.

0.

0.

.

0.

0.

0.

0.

.

0.

.

0.

INITIAL COND I T

I

ONS a*************************

THRH0V= WE I GHT

H0VRAT= (THRHOV - P R OP W T
) * P R P E

F

************ DEFINE MACRO TO LIMIT ANGLE ***************

MACRO ANGOUT= A N L I M ( A N G I N , A N G M I N , A N G M A X

)

ANSI GN= SI GN( 1 . , ANGI N )

AN GOUT = LIMIT(ANGMIN,ANGMAX,ANSIGN*ANGIN)
ANGOUT= ANS I GN*ANGOUT

ENDMAC
********* DEFINE MACRO FOR USE IN SERVO EQUATION LIMITING
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*******************

MACRO OUT= SERVO(OUT0,OUTD ,

L

IM)

OUT= I NTGRL(OUT0,OUTD )

OUT= LIMIT(-LIM,L IM.OUT )

ENDMAC
**********************************************************************

DYNAM I C

*

************** COORDINATE TRANSLATION COMPONENTS
***** BODY-FIXED TO EARTH FIXED (EULER ANGLES)
* ROW 1

TRANS(1)= COSCPS I )*COS(THT )

TRANS(2)= COS(PSI)*SIN(THT)*SIN(PHI)
TRANS<3)= COS(PSI)*SIN(THT)*COS(PHI)

* ROW 2

TRANS(4)= S I N(PSI )*COS(THT )

TRANS(5)= SIN(PSI)*SIN(THT)*SIN(PHI)
TRANS(6)= SIN(PSI)*SIN(THT)*COS(PHI)

* ROW 3

TRANS(7)= - S I N( THT )

TRANS(8)= COS(THT )*SI N(PH I )

TRANS(9)= COS(THT )*COS( PH I )

SI N(PSI )*COS(PHI )

SIN(PSI)*SIN(PHI)

COS(PSI )*COS(PH I )

SI N(PH I )*COS< PSI )

:********************** VELOCITIES *********************************

VTOT = SQRT(UU*UU + VV*VV + WW*WW)
UERTH= UU*TRANS<1) + VV*TRANS(2) + WW*TRANS<3)
VERTH= UU*TRANS<4) + VV*TRANS(5) + WW*TRANS(6)
WERTH= UU*TRANS(7) + VV*TRANS<8) + WW*TRANS(9)
GRNSPD= SQRT( VERTH*VERTH + WERTH*WERTH)

************************** ANGLE OF ATTACK *************************
* I F(VTOT . LE . . 5 ) THEN

ALPHA= 1.570796
BETA = 0.

*

*

*

*

ELSE
ALPHA= ASIN(WW/VTOT )

BETA = ASI N(VV/VTOT )

END I F

ALPHA = ANL IM(ALPHA, ALPMIN
,
ALPMAX)

BETA = ANL IM(BETA, ., 1 .570796)
AOATOT= RADEG*SQRT( ALPHA*ALPHA + BETA*BETA)
AOATOT= LIMIT(AOAMIN,AOAMAX,AOATOT)

************** ANGLE OF ATTACK COORDINATE TRANSFORMATION
*** BODY-FIXED TO VELOCITY
* ROW 1

ABTRAN(1)= - COS(ALPHA)*COS(BETA)
ABTRAN(2)= SI N(BETA)
ABTRAN(3)= S I N ( A L P H A ) * COS ( B E T A

)

* ROW 2

ABTRAN(4)= COS ( A L P H A ) * S I N ( B E T A

)

ABTRAN(5)= COS(BETA)
ABTRAN(6)= - S I N < A L P H A ) *S I N ( B E T A

)

***********
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OU 3

ABTRAN(7)= - SI N( ALPHA)
ABTRAN(8)= .

ABTRAN(9)= - COS( ALPHA)
*

* * * !
**************** FORCE COMPONENTS ********* ********** ********

THR = L IMI T( THRM I N , THRMAX, T H R H V + T H R T )

NEWVEQ= FGEN2(VEQ ,
AOATOT , . )

VDELTA= VTOT- SO R T ( W T R A T ) * N E W V E

Q

RHOVA = RHO*P I*SQRT(WTRAT )*NEWVEQ

DELTIP= (THR - WE I G H T ) * P R OP E

F

VT I P = HOVRAT + DELTIP

USEDEL= DELT I
P * R H V A* W T R A

T

USESLP= VDELTA*WTRAT
USEEQ = (1. + ( 2 . /VT i P )*DELT I P )

*

FORCES
LAF = USEDEL*AFGEN( CLDEL , AOATOT )

SAF = USEDEL*AFGEN ( CSDEL .AOATOT )

DAF = USEDEL*AFGEN ( CDDEL , AOATOT )

LTF = USEEQ*LEQ

WTRAT

+ USESLP*AFGEN< LSLOPE
,
AOATOT )

+ USESLP*SSLOPE
+ USESLP*AFGEN (DSLOPE , AOATOT )

ABTRAN( 1 )*DAF

ABTRAN(4 )*DAF

ABTRAN( 7)*DAF
ABTRAN(3 )*LT F

ABTRAN(6)*LTF
ABTRAN(9)*LTF
FAX + FTX

FAY + FTY

FAZ + FTZ

ABTRAN(3 )*LAF

ABTRAN(6)*LAF
ABTRAN (

9

)*LAF

FAX

FAY

FAZ

FTX

FTY

FTZ

FATX
FATY

FAJLZ

MOMENTS
RAM = USEDEL*AFGEN (CRDEL .AOATOT ) + U S E S L P * A F G E N ( R S L P E , AO A T T )

PAM =

+ USEEQ*FGEN2( REQ
,
AOATOT , . )

USEDEL*AFGEN( CPOEL , AOATOT ) + U S E S L P * A F G E N ( P S L P E , A A T T )

YAM

+ USEEQ* FGEN2 ( PEQ ,
AOATOT , . )

USEDE L*A FGEN

(

CYDEL , AOATOT ) U S E S L P * A F G E N ( Y S L P E , A A T T )

+ USEEQ*FGEN2( YEQ , AOATOT , . )

LA = ABTRAN ( 1 )*RAM A B T R A N ( 2 ) * P A M A B T R A N ( 3 ) * Y A

M

MA = ABTRAN ( 4 ) *RAM + A 8 T R A N ( 5 ) * P A M A B T R A N ( 6 ) * Y A

M

NA = ABTRAN ( 7)*RAM + A B T R A N ( 8 ) * P A M A 8 T R A N ( 9 ) * Y A

M

LT = - DELT I P*DELT I P*FRCSLG* . 0729 + I X X * L A E F
F * D E L

A

MT = MEEFFMYY*DELE
NT = NREFFMZZ*DELR
LAT = LA + LT

MAT = MA + MT

NAT = NA + NT
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************************* GRAVITY COMPONENTS ***********************

GX = - GRAV*TRANS( 1 )

GY = - GRAV*( - TRANS<4) )

GZ = - GRAV*( - TRANSC 7) )

**********************************************************************

SAMPLE
**** INSERT CONTROLLER HERE
*

*

*+++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++
DER I VAT I VE

******************** MOMENT DERIVATIVES ****************************

PD = (IYMIZ*R*Q - IRX*DELTIP + LAT)/IXX
= (IZMIX*P*R - IRX*VTIP*R + MAT)/IYY
= (IXMIY*P*Q + IRX*VTIP*Q + NAT)/IZZ

*****************************

GX

GY

QD

RD
******************** FORCE DERIVATIVES

UD = (VV*R - WW*Q) + FATX/MASS +

*****************************

VD = (WW*P - UU*R) + FATY/MASS *

WD = (UU*Q - VV*P) + FATZ/MASS + GZ
******************** ANGLE DERIVATIVES

PHID= P + (Q*SIN(PHI) + R*COS(PH I ) )*TAN(THT )

THTD= Q*COS(PHI) - R*SIN(PHI)
PSID= (Q*SIN(PHI) + R*COS(PH I ) )/COS(THT )

******************** SERVO DERIVATIVES *****************************
*** ELEVATOR, RUDDER, AILERON, THROTTLE

DELEDD= -H1*DELED - H2*DELE + H2*UE
H2*DELR + H2*URDELRDD= -H1*DELRD

DELADD= -H1*DELAD
DLTRDD= -H1*DLTRD
THROTD= -WE*THROT

H2*DELA + H2*UA
H2*DLTR + H2*UT
K*WE*DLTR

***
I NTEGRAT I ONS

************************

P = I NTGRL(P0 , PD )

Q = I NTGRL(Q0 , QD )

R = I NTGRL (RO , RD )

*************************

MOMENT EQUATIONS

FORCE EQUATIONS
UU= I NTGRL(U0 ,UD )

VV= I NTGRL( VO , VD )

WW= I NTGRL (WO , WD )

************************** EULER ANGLES
PHI = I NTGRL( PH I , PH ID

)

THT = I NTGRL( THTO , THTD

)

PSI = I NTGRL(PS I , PSID )

PH IDEG= RADEG*PH I

THTDEG= RADEG*THT
PSIDEG= RADEG*PSI

************************** SERVO EQUATIONS
DELED = SERVO(DELED0,DELEDD , RMAX)
DELRD = SERVO(DELRD0,DELRDD , RMAX)

**************************

*************************

****************************

************************
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DELAD = SERVO(DELAD0,DELADD
,
RMAX)

DLTRD = SERVCKDLTRDO , OLTRDD , RMAXT )

DELE = I NTGRL (DELEO, DELED )

DELR = SERVOCDELRO , DELRD , MAXDFL )

DELA = I NTGRL (DELAO , DELAD )

DLTR = SERVO(DLTRO, DLTRD , TAMAX )

THROT = I NTGRL (THROTO
,
THROTD )

ALT I TUDE
ALT = I NTGRL(ALTO,UERTH )

DIST= I NTGRL (GRNSPO , GRNSPD )

CONTRL
PRINT
SAVE .

PARAM

LABEL

GRAPH
UN= ' T

SC = 4

GRAPH

GRAPH

F I NT IM= 5

.5Vphideg,thtdeg,psideg,p,q,r,uu,vv,uw,dela
05, PHIDEG, thtdeg,psideg,p,q,r,uu,vv,uu
UE =0.,UR =0 . ,UA=- . 052 ,

UT= 0.,DELA0=0
(G1) TIME RESPONSE TO UA =-.052(NO CONTROL)
(G1 ,DE=TEK618) T I M E ( N I = 5 , U N = S E C ) P H I D E G ( N I = 4 , S C = 4

HTDEG AND PSIDEG ( D E G R E E S ) '

, L = - 90 ) T H T D E G ( AX = OM I

5,LI=3,LO=-90) PSIDEG(AX=0MIT,NI=4,SC=45,LI=4,L0=
(G2 , DE = TEK618,0V, P0 = , 5 ) T I M E ( N I = 5 , U N = S E C ) P(NI=4
UN='Q AND R ( RAD/SEC ) '

, L0=- 2, SC = 1 , L I = 1 ) Q(AX = 0MIT
NI=4,LO=-2,SC=1,LI=3) R(AX=OMIT,NI=4,LO=-2,SC=1,L
(G2 ,DE = TEK618, OV, P0 = 6, 0) T I ME ( N I =5 , UN = S E C ) VV(NI =

UN='UU AND WW ( FT/SEC) , LO=- 2, SC = 5 , L I =3 ) UU(AX = OM

NI=4,LO=-2,SC=5,LI=1) WU(AX=OMIT,NI=4,LO=-2,SC=5,

5,LI=1 ,

T,NI=4,
-90 )

1=4)

4, . .

IT, .

L I =4)

END

STOP
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APraumx c

OCNTRDLIER AND LINEAR MDDEL SIMLTLATLCN

The DSI/VS source code used to simulate the linearized model is

listed here. The steady-state controller is implemented under the

"SAMPLE" segment. This same controller is used in the nonlinear model.

TITLE SIMPLE MODEL WITH OPTIMAL GAINS FROM CONTROLS - 9 AUG 87
*** FEED BACK GAINS USING THE ERROR STATE CONTROL LAW U= -F(X-R) ***

ARRAY RKPT(8),RKQR(8),XPT<8),XQR(8),UPT(2),UQR(2),EPT<8),EQR(8)
FGEN2 FBKPT= 2,8,16, 1,2,1,2,3,4,5,6,7,8, ...

1 . 99484, -.60299, -.71717, .2 7437, 1. 74 559, .00 994, .14049, .00016, ..

-. 58535, 111. 16428, -.20533, 28. 908 78,. 58170, 1. 6684 5,. 00962,. 13667

FGEN2 FBKQR= 2,8,16, 1,2,1,2,3,4,5,6,7,8, ...

-1. 61288, -1.61027, -.55320, .31985, 1.05412, -.20 75 2, .12656, -.00264,.
1. 56829, -1. 59987, -.304 79, -.56615,. 10693, 1. 23477, .00096, .12 96

2

*

CONST RMAXT= 100., TAMAX= 100., MAXDFL= .5236, RMAX= .87266
CONST A1 = . 0236133, A2 = -3. 73 81, A3 =-6. 750686, A4=. 4830933
CONST A5_=6.784433,A6=. 10 7891, A7=. 893727
CONST LAE=-21.29,MEE=-14.51,NRE=-16.68
CONST H1= 17.77, H2= 157.91
CONST PHDES=.0,ALRDES=.00,THDES=.0,PSDES=,0
CONST RKPT(3)=0,RKPT<4)=0,RKPT<5)=0,RKPT<6)=0,RKPT(7)=0,RKPT(8)=0
CONST RKQR(3)=0,RKQR(4)=0,RKQR(5)=0,RKQR(6)=0,RKQR(7)=0,RKQR(8)=0
INI T

DEIED0=
DELRD0=
DELAD0=
DLTRD0=
DELE0=
DELR0=
DELA0=
DLTR0=
P0=
Q0=

R0=

THR0=
1= 1

J= 1
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********* DEFINE MACRO FOR USE IN

MACRO OUT= SERVO(OUT0 , OUTD , L IM)

OUT= I NTGRL (OUTO , OUTD )

OUT= LIMIT(-LIM,LIM ,OUT )

SERVO EQUAT ION LIMITING *********

ENDMAC
DYNAMI
* * * *

j

C

NPUT CALCULATIONS
RKPTC 1 ) = PHDES*STEP( . )

RKPT(2) = ALRDES*STEP(0 .

)

RKQR ( 1 ) = THDES*STEP(0 . )

RKQR(2) = PSDES*STEP( . )

XPT(1 ) =

XPT<2)=
XPT(3)=
XPT( A ) =

XPT(5 ) =

XPT (6)=

XPT ( 7) =

XPT (8 ) =

XQR ( 1 ) =

XQR( 2)=

XQR(3)=
XQR(4)=
XQR(5 ) =

XQR(6)=
XQR<7)=
XQR(8)=

PH I B

U

P

THROT
DELA
DLTR

DELAD
D LTRD

THTB

PSI B

Q

R

DELE
DELR
DELED
DELRD

SAMPLE
*

20

30

DO_30 1=1

BUPT
2

=

BUQR =0

DO 20 J = 1 ,8

EPT( J )

EQR ( J )

XPT ( J ) - RKPT ( J )

XQR( J ) - RKQR ( J )

FBPT= FGEN2( FBKPT , I , J )

FBQR= FGEN2( FBKQR , I , J )

BUPT= BUPT

BUQR= BUQR

CONT I NUE

UPT ( I )= -
( BUPT )

UQR( I )= - (BUQR )

CONT I NUE

UA= UPT ( 1 )

UT= UPT( 2 )

UE= UQR ( 1 )

UR= UQR ( 2 )

EPT(J)*FBPT
EQR ( J ) * FBQR
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DERI V

PH I BD= P

UD = A7*THR0T
THTBD= Q

PSI BD= R

PD= A1*U
THROTD=
QD= A3*R

RD= A5*Q
ELEVATOR,
DEL ADD=

D L T R D D =

DE LEDD =

DELRDD=

+ A2*THROT + LAE*DELA
THROT + . 5*DLTR
+ MEE*DELE
+ NRE*DELR
RUDDER, AILERON, THROTTLE

- H1*DELAD
- H1*DLTRD
- H1*DELED
- H1*DELRD

H2*DELA
H2*DLTR
H2*DELE
H2*DELR

H2*UA
H2*UT

H2*UE
H2*UR

PHIB= I NTGRL (PH I BO , PH I BD )

U =

I

NTGRLCUO ,UD )

THTB= I NTGRLC THTBO , THTBD )

PS I B= I NTGRL ( PS I BO , PS I BD )

P= I NTGRL( PO , PD )

THROT= I NTGRL ( THRO , THROTD )

Q= I NTGRL ( QO , QD )

R= I NTGRL (RO , RD )

DELED
DELRD
DELAD
DLTRD
DELE
DELR
DELA
CLLXR

DES= .

ZER =

SERVO(DELED0,DELEDD,RMAX)
SERVO(DELRD0,DELRDD,RMAX)
SERVO(DELAD0,DELADD,RMAX)
SERVO(DLTRD0,DLTRDD f

RMAXT)
I NTGRL (DELEO ,

DELED )

SERVO(DELR0,"DELRD,MAXDFL)
I NTGRL(DELAO , DELAD )

SERVO(DLTR0,DLTRD,TAMAX)
1

0.

CONTROL FINTIM=5,DELS=.O4,DELT=.0O5
PARAM PHIB0=.00,U0=0,THTB0=0,PSIB0=0
SAVE .04,PHIB,U,THTB,PSIB,ZER,DES
PRINT .2,PHIB,U,THTB f PSIB
LABEL (G1) REGULATOR GAINS - ERROR STATE - PHI (0)=

GRAPH (G1 ,DE = TEK618) T I M E ( N I = 5 , U N = S E C ) P H I B ( N I =4 , S C =

UN='R/SEC AND ALT RATE F / S E C , L 0= - . 5 ) U(AX = OMIT,NI
SC=.5,LI=3,LO=-.5) DES(AX=OMIT,NI=10,SC=.05,LI=4,L
ZER(AX=OMIT,NI=4,SC=.05,LI=4,LO=-.05)

GRAPH (G2, DE = TEK618, OV, PO = 6,4 . 5 ) T I ME ( N I = 5 , UN = S E C ) T

UN='AND PSIB R/SEC , L0=- . 05 , SC= . 05 , L I =1 ) PSIB(

NI=4,L0=- .05,SC=.05,LI=3) DES(AX = 0MIT,NI=4,L0=- .

ZER<AX=OMIT,NI=4,SC=.05,LI=4,LO=-.05)
END

STOP

. 1

. 05 , L I = 1 , ...

=4, ...

0=- . 05 ) ...

HTB(N I =4, . . .

AX = OMI T , ...

05

,

SC= . 05 , L I =4)
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APPENDIX D

NUMERICAL ELECTKCMAGJETICS COCE

1. Modelling the AROD Body

The Numerical Electromagnetics Code (NEC) enables the user to

simulate a solid surface using either the wire grid or the surface patch

technique. Extensive use of symmetry in the program and the circular

symmetry of the AROD model allow that the surface patch approach be

easily implemented. Figure D.l illustrates the procedure schematically.

Figure D.l Schematic for AROD Body Modelling
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The following computer code is the NEC model of the body which was

utilized.

(1) Build the 1st column of patches. The column is 9.92° in angular
width (arc) and 14 inches high. The arc of the column is in the
XY plane and the height of the column is in the Z direction at a
radius of 15 inches from the Z axis.

SP 0, 0, 15., 0., 5., 18.435, 0., 9.92

SP 0, 0, 15., 0., 1.5, 5.711, 0., 7.44

SP 0, 0, 15., 0. ,
- 1 .5, -5.71 1

,

0., 7.44

SP0, 0, 15., 0. ,
-5. ,- 18.435, 0., 9.92

(2) Rotate and duplicate the column. The 1st column is rotated in the
XY plane and duplicated to form a column that is now 18.84° wide
and 14 inches high.

GM 0, 1 , . , . , 9.4735 , 0. , . , .

(3) Add patches to top and bottom to form wedge. These patches
together with the column form a 18.84° section of the cylinder.

SP

SP

SP

SP

SP

SP

SP

SP

o,

o,

o,

o,

o,

o,

o,

o,

o,

o,

o,

o,

o,

o,

13.95,

13.95,
1 1 .96,

1 1 .96,

9.470,
9.470,
4.980,
4.980,

1 . 16, 7

1 . 16, -7,

,990, 7

.990, -7

.785, 7

.785, -7

.413, 7

.413,-7

90

-90

90
-90

90
-90

90
-90

737,

737,

737,

737.

737,

4.737,
4.737,
4.737,

9

9

7

7

9

9

9

9

26

26

94

94

425

425

92

92

(4) Complete the cylinder. The entire 18.84° wedge is rotated 19
times to form a 360° cylinder which is missing only a top and
bottom center piece. These two center pieces are added along with
each antenna that is to be simulated, gs scales the dimensions to
meters from inches and ge declares an end to geometry.

GR

GS

GE

0,

2

19

(5) Specify frequency. The frequency at which the model and antenna
are to simulated is specified. In this example, f = 800 MHz.

FR 0,0,0, 0,800. ,o.

(6) Store the model. The entire symmetric model is stored in a
Green's function matrix for recall when the antenna is simulated.

UG
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2. Antenna Simulation

A dipole array and a loop antenna are simulated in the NEC code

which follows.

a. 5 Dipole Ring Array

A five dipole ring array consists of five half-wave dipoles that

are arranged in a circle.

(1) Read the Green's function. The AROD body model which is stored in

a Green's function matrix is recalled to start the simulation.
This matrix also includes the frequency at which the antenna will
transmit.

GF

(2) Specify the dipoles. Wire .1 inch in radius and 7.38 inches long
is used to model a half-wave dipole at f = 800 MHz. 11 segments
in each dipole is used so that NEC automatically calculates
current losses. 5 dipoles are spaced equally around the circle at
a radius of 15.5 inches. The dipoles longitudinal axis is in the
Z direction.

GW 1

,

GU 2,

GU 3,

GU 4,

GU 5 .

15.5, 0., 3.69, 15.5, 0..-3.69, .1

4.79, 14.74, 3.69, 4.79, 14.74,-3.69, .1

-12.54, 9.11, 3.69, -12.54, 9.11,-3.69, .1

-12.54, -9.11, 3.69, -12.54, -9.11,-3.69, .1

4.79,-14.74, 3.69, 4.79, -14.74,-3.69, .1

(3) Complete the cylinder. The two center patches which were excluded
from the symmetric AROD body model are added, the dimensions are
scaled to meters, and the geometry is ended with no ground plane.

SP 0, 0, 0., 0.., 7., 90, 0., 12.57
SP 0, 0, 0. , 0. , -7.

,

-90, 0. , 12.57
GS 2

GE

(4) Specify the driving source. In this example, a feed point at the
center of each dipole provides 1.0 volts.

EX 0, 1 , 6, 01 , 1 . , .

b. Loop Antenna

A single wire loop antenna is added to the AROD body model. The

loop is flush to the surface of the AROD.
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(1) Read the Green's function. The AROD body model which is stored in
a Green's function matrix is recalled to start the simulation.
This matrix also includes the frequency at which the antenna will
transmit.

GF

(2) Specify 1st wire in the circle. The circle will consist of wire
arc segments connected together. The 1st segment spans 10° and is
at a radius of 15.5 inches. The wire is in the XZ plane initially
and is then moved to the XY plane.

GA 1 , 3 , 15.5, - 5 . , 5 . ,' .1

GM 0, 0, 90., 0., 0., 0., 0., 0., 1

(3) Create the loop. The first wire is duplicated and rotated 36
times to form a complete circle.

GR 1, 36

(3) Complete the cylinder. The two center patches which were excluded
from the symmetric AROD body model are added, the dimensions are
scaled to meters, and the geometry is ended with no ground plane.

SP 0, 0, 0. , 0. , 7. , 90, 0. , 12.57
SP 0, 0, 0. , 0. , -7.

,

-90, 0. , 12.57
GS 2

GE

(4) Specify the driving source. In this example, a feed point at <p =
0° provides 1.0 volts.

ex o, 1 , 6, 01 , 1
. , o.
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